TU Darmstadt / ULB / TUbiblio

Model-Based Optimization of Solid-Supported Micro-Hotplates for Microfluidic Cryofixation

Thiem, Daniel B. ; Szabo, Greta ; Burg, Thomas P. (2024)
Model-Based Optimization of Solid-Supported Micro-Hotplates for Microfluidic Cryofixation.
In: Micromachines, 2024, 15 (9)
doi: 10.26083/tuprints-00028069
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Cryofixation by ultra-rapid freezing is widely regarded as the gold standard for preserving cell structure without artefacts for electron microscopy. However, conventional cryofixation technologies are not compatible with live imaging, making it difficult to capture dynamic cellular processes at a precise time. To overcome this limitation, we recently introduced a new technology, called microfluidic cryofixation. The principle is based on micro-hotplates counter-cooled with liquid nitrogen. While the power is on, the sample inside a foil-embedded microchannel on top of the micro-hotplate is kept warm. When the heater is turned off, the thermal energy is drained rapidly and the sample freezes. While this principle has been demonstrated experimentally with small samples (<0.5 mm²), there is an important trade-off between the attainable cooling rate, sample size, and heater power. Here, we elucidate these connections by theoretical modeling and by measurements. Our findings show that cooling rates of 10⁶ K s⁻¹, which are required for the vitrification of pure water, can theoretically be attained in samples up to ∼1 mm wide and 5 μm thick by using diamond substrates. If a heat sink made of silicon or copper is used, the maximum thickness for the same cooling rate is reduced to ∼3 μm. Importantly, cooling rates of 10⁴ K s⁻¹ to 10⁵ K s⁻¹ can theoretically be attained for samples of arbitrary area. Such rates are sufficient for many real biological samples due to the natural cryoprotective effect of the cytosol. Thus, we expect that the vitrification of millimeter-scale specimens with thicknesses in the 10 μm range should be possible using micro-hotplate-based microfluidic cryofixation technology.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Thiem, Daniel B. ; Szabo, Greta ; Burg, Thomas P.
Art des Eintrags: Zweitveröffentlichung
Titel: Model-Based Optimization of Solid-Supported Micro-Hotplates for Microfluidic Cryofixation
Sprache: Englisch
Publikationsjahr: 16 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: September 2024
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Micromachines
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 9
Kollation: 18 Seiten
DOI: 10.26083/tuprints-00028069
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28069
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Cryofixation by ultra-rapid freezing is widely regarded as the gold standard for preserving cell structure without artefacts for electron microscopy. However, conventional cryofixation technologies are not compatible with live imaging, making it difficult to capture dynamic cellular processes at a precise time. To overcome this limitation, we recently introduced a new technology, called microfluidic cryofixation. The principle is based on micro-hotplates counter-cooled with liquid nitrogen. While the power is on, the sample inside a foil-embedded microchannel on top of the micro-hotplate is kept warm. When the heater is turned off, the thermal energy is drained rapidly and the sample freezes. While this principle has been demonstrated experimentally with small samples (<0.5 mm²), there is an important trade-off between the attainable cooling rate, sample size, and heater power. Here, we elucidate these connections by theoretical modeling and by measurements. Our findings show that cooling rates of 10⁶ K s⁻¹, which are required for the vitrification of pure water, can theoretically be attained in samples up to ∼1 mm wide and 5 μm thick by using diamond substrates. If a heat sink made of silicon or copper is used, the maximum thickness for the same cooling rate is reduced to ∼3 μm. Importantly, cooling rates of 10⁴ K s⁻¹ to 10⁵ K s⁻¹ can theoretically be attained for samples of arbitrary area. Such rates are sufficient for many real biological samples due to the natural cryoprotective effect of the cytosol. Thus, we expect that the vitrification of millimeter-scale specimens with thicknesses in the 10 μm range should be possible using micro-hotplate-based microfluidic cryofixation technology.

Freie Schlagworte: cryofixation, vitrification, cooling rate, heat conduction model
ID-Nummer: Artikel-ID: 1069
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-280697
Zusätzliche Informationen:

This article belongs to the Special Issue Application of Microfluidic Technology in Bioengineering

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Integrierte Mikro-Nano-Systeme
Interdisziplinäre Forschungsprojekte
Interdisziplinäre Forschungsprojekte > Centre for Synthetic Biology
Hinterlegungsdatum: 16 Sep 2024 11:11
Letzte Änderung: 18 Sep 2024 10:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen