TU Darmstadt / ULB / TUbiblio

Unraveling impacts of polycrystalline microstructures on ionic conductivity of ceramic electrolytes by computational homogenization and machine learning

Peng, Xiang-Long ; Xu, Bai-Xiang (2024)
Unraveling impacts of polycrystalline microstructures on ionic conductivity of ceramic electrolytes by computational homogenization and machine learning.
In: Journal of Applied Physics, 136 (10)
doi: 10.1063/5.0223138
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The ionic conductivity at the grain boundaries (GBs) in oxide ceramics is typically several orders of magnitude lower than that within the grain interior. This detrimental GB effect is the main bottleneck for designing high-performance ceramic electrolytes intended for use in solid-state lithium-ion batteries, fuel cells, and electrolyzer cells. The macroscopic ionic conductivity in oxide ceramics is essentially governed by the underlying polycrystalline microstructures where GBs and grain morphology go hand in hand. This provides the possibility to enhance the ion conductivity by microstructure engineering. To this end, a thorough understanding of microstructure–property correlation is highly desirable. In this work, we investigate numerous polycrystalline microstructure samples with varying grain and grain boundary features. Their macroscopic ionic conductivities are numerically evaluated by the finite element homogenization method, whereby the GB resistance is explicitly regarded. The influence of different microstructural features on the effective ionic conductivity is systematically studied. The microstructure–property relationships are revealed. Additionally, a graph neural network-based machine learning model is constructed and trained. It can accurately predict the effective ionic conductivity for a given polycrystalline microstructure. This work provides crucial quantitative guidelines for optimizing the ionic conducting performance of oxide ceramics by tailoring microstructures.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Peng, Xiang-Long ; Xu, Bai-Xiang
Art des Eintrags: Bibliographie
Titel: Unraveling impacts of polycrystalline microstructures on ionic conductivity of ceramic electrolytes by computational homogenization and machine learning
Sprache: Englisch
Publikationsjahr: September 2024
Verlag: AIP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 136
(Heft-)Nummer: 10
DOI: 10.1063/5.0223138
Kurzbeschreibung (Abstract):

The ionic conductivity at the grain boundaries (GBs) in oxide ceramics is typically several orders of magnitude lower than that within the grain interior. This detrimental GB effect is the main bottleneck for designing high-performance ceramic electrolytes intended for use in solid-state lithium-ion batteries, fuel cells, and electrolyzer cells. The macroscopic ionic conductivity in oxide ceramics is essentially governed by the underlying polycrystalline microstructures where GBs and grain morphology go hand in hand. This provides the possibility to enhance the ion conductivity by microstructure engineering. To this end, a thorough understanding of microstructure–property correlation is highly desirable. In this work, we investigate numerous polycrystalline microstructure samples with varying grain and grain boundary features. Their macroscopic ionic conductivities are numerically evaluated by the finite element homogenization method, whereby the GB resistance is explicitly regarded. The influence of different microstructural features on the effective ionic conductivity is systematically studied. The microstructure–property relationships are revealed. Additionally, a graph neural network-based machine learning model is constructed and trained. It can accurately predict the effective ionic conductivity for a given polycrystalline microstructure. This work provides crucial quantitative guidelines for optimizing the ionic conducting performance of oxide ceramics by tailoring microstructures.

ID-Nummer: Artikel-ID: 105101
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 16 Sep 2024 05:51
Letzte Änderung: 16 Sep 2024 06:54
PPN: 52152489X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen