Winkler, Robert (2024)
Structure-Property-Correlations in HfO₂ based Memristive Devices.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00027736
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
This PhD research aimed to bridge information gaps in oxide electronics through synthesis, macroscopic and microscopic investigation, and device characterization. Utilizing Reactive Molecular Beam Epitaxy (RMBE) and other Physical Vapor Deposition (PVD) techniques, the study precisely fabricated high-quality semiconductor heterostructures. It focused on the development and impact of texture in thin films, particularly in memristive systems with metal-insulator-metal (MIM) structures.
Initial investigations involved 23 nm TiN₁₋ₓ thin films grown on c-cut sapphire, revealing a biaxial texture and elongated grain structure influenced by substrate miscut. Notably, TiN₁₋ₓ films with high nitrogen deficiency exhibited grain boundary dissociation, advantageous for memristive devices as an ohmic bottom electrode.
Subsequent work engineered textures in HfO₂ thin films, used as the insulating layer in MIM structures. Elevated temperature RMBE growth allowed the development of distinct (001) or (111) textures on (111) textured TiN₁₋ₓ, impacting device performance. Density functional theory (DFT) calculations linked grain boundary atomic structure to the observed variations in forming voltage (VF).
Additionally, the microstructure evolution of amorphous HfO₂ during in situ transmission electron microscopy (TEM) and 4D-scanning TEM (4D-STEM) annealing was studied. Crystallization into the monoclinic phase at 180 °C was observed, with texture development enhancing device performance by lowering the forming voltage from -6.1 V to -4.2 V.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2024 | ||||
Autor(en): | Winkler, Robert | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Structure-Property-Correlations in HfO₂ based Memristive Devices | ||||
Sprache: | Englisch | ||||
Referenten: | Molina-Luna, Prof. Dr. Leopoldo ; Alff, Prof. Dr. Lambert | ||||
Publikationsjahr: | 13 September 2024 | ||||
Ort: | Darmstadt | ||||
Kollation: | 148 Seiten in verschiedenen Zählungen | ||||
Datum der mündlichen Prüfung: | 9 Juli 2024 | ||||
DOI: | 10.26083/tuprints-00027736 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/27736 | ||||
Kurzbeschreibung (Abstract): | This PhD research aimed to bridge information gaps in oxide electronics through synthesis, macroscopic and microscopic investigation, and device characterization. Utilizing Reactive Molecular Beam Epitaxy (RMBE) and other Physical Vapor Deposition (PVD) techniques, the study precisely fabricated high-quality semiconductor heterostructures. It focused on the development and impact of texture in thin films, particularly in memristive systems with metal-insulator-metal (MIM) structures. Initial investigations involved 23 nm TiN₁₋ₓ thin films grown on c-cut sapphire, revealing a biaxial texture and elongated grain structure influenced by substrate miscut. Notably, TiN₁₋ₓ films with high nitrogen deficiency exhibited grain boundary dissociation, advantageous for memristive devices as an ohmic bottom electrode. Subsequent work engineered textures in HfO₂ thin films, used as the insulating layer in MIM structures. Elevated temperature RMBE growth allowed the development of distinct (001) or (111) textures on (111) textured TiN₁₋ₓ, impacting device performance. Density functional theory (DFT) calculations linked grain boundary atomic structure to the observed variations in forming voltage (VF). Additionally, the microstructure evolution of amorphous HfO₂ during in situ transmission electron microscopy (TEM) and 4D-scanning TEM (4D-STEM) annealing was studied. Crystallization into the monoclinic phase at 180 °C was observed, with texture development enhancing device performance by lowering the forming voltage from -6.1 V to -4.2 V. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-277360 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften | ||||
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie |
||||
Hinterlegungsdatum: | 13 Sep 2024 12:05 | ||||
Letzte Änderung: | 16 Sep 2024 05:44 | ||||
PPN: | |||||
Referenten: | Molina-Luna, Prof. Dr. Leopoldo ; Alff, Prof. Dr. Lambert | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 9 Juli 2024 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |