Dziadkowiec, Joanna ; Cheng, Hsiu-Wei ; Ludwig, Michael ; Ban, Matea ; Tausendpfund, Timon Pascal ; von Klitzing, Regine ; Mezger, Markus ; Valtiner, Markus (2024)
Cohesion Gain Induced by Nanosilica Consolidants for Monumental Stone Restoration.
In: Langmuir, 2022, 38 (22)
doi: 10.26083/tuprints-00026634
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Mineral nanoparticle suspensions with consolidating properties have been successfully applied in the restoration of weathered architectural surfaces. However, the design of these consolidants is usually stone-specific and based on trial and error, which prevents their robust operation for a wide range of highly heterogeneous monumental stone materials. In this work, we develop a facile and versatile method to systematically study the consolidating mechanisms in action using a surface forces apparatus (SFA) with real-time force sensing and an X-ray surface forces apparatus (X-SFA). We directly assess the mechanical tensile strength of nanosilica-treated single mineral contacts and show a sharp increase in their cohesion. The smallest used nanoparticles provide an order of magnitude stronger contacts. We further resolve the microstructures and forces acting during evaporation-driven, capillary-force-induced nanoparticle aggregation processes, highlighting the importance of the interactions between the nanoparticles and the confining mineral walls. Our novel SFA-based approach offers insight into nano- and microscale mechanisms of consolidating silica treatments, and it can aid the design of nanomaterials used in stone consolidation.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Dziadkowiec, Joanna ; Cheng, Hsiu-Wei ; Ludwig, Michael ; Ban, Matea ; Tausendpfund, Timon Pascal ; von Klitzing, Regine ; Mezger, Markus ; Valtiner, Markus |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Cohesion Gain Induced by Nanosilica Consolidants for Monumental Stone Restoration |
Sprache: | Englisch |
Publikationsjahr: | 10 September 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Ort der Erstveröffentlichung: | Washington, DC |
Verlag: | American Chemical Society |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Langmuir |
Jahrgang/Volume einer Zeitschrift: | 38 |
(Heft-)Nummer: | 22 |
Kollation: | 10 Seiten |
DOI: | 10.26083/tuprints-00026634 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/26634 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Mineral nanoparticle suspensions with consolidating properties have been successfully applied in the restoration of weathered architectural surfaces. However, the design of these consolidants is usually stone-specific and based on trial and error, which prevents their robust operation for a wide range of highly heterogeneous monumental stone materials. In this work, we develop a facile and versatile method to systematically study the consolidating mechanisms in action using a surface forces apparatus (SFA) with real-time force sensing and an X-ray surface forces apparatus (X-SFA). We directly assess the mechanical tensile strength of nanosilica-treated single mineral contacts and show a sharp increase in their cohesion. The smallest used nanoparticles provide an order of magnitude stronger contacts. We further resolve the microstructures and forces acting during evaporation-driven, capillary-force-induced nanoparticle aggregation processes, highlighting the importance of the interactions between the nanoparticles and the confining mineral walls. Our novel SFA-based approach offers insight into nano- and microscale mechanisms of consolidating silica treatments, and it can aid the design of nanomaterials used in stone consolidation. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-266345 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie 600 Technik, Medizin, angewandte Wissenschaften > 670 Industrielle und handwerkliche Fertigung |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM) 05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM) > Soft Matter at Interfaces (SMI) |
Hinterlegungsdatum: | 10 Sep 2024 07:33 |
Letzte Änderung: | 18 Sep 2024 10:38 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Cohesion Gain Induced by Nanosilica Consolidants for Monumental Stone Restoration. (deposited 10 Sep 2024 07:33) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |