TU Darmstadt / ULB / TUbiblio

Cohesion Gain Induced by Nanosilica Consolidants for Monumental Stone Restoration

Dziadkowiec, Joanna ; Cheng, Hsiu-Wei ; Ludwig, Michael ; Ban, Matea ; Tausendpfund, Timon Pascal ; von Klitzing, Regine ; Mezger, Markus ; Valtiner, Markus (2024)
Cohesion Gain Induced by Nanosilica Consolidants for Monumental Stone Restoration.
In: Langmuir, 2022, 38 (22)
doi: 10.26083/tuprints-00026634
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Mineral nanoparticle suspensions with consolidating properties have been successfully applied in the restoration of weathered architectural surfaces. However, the design of these consolidants is usually stone-specific and based on trial and error, which prevents their robust operation for a wide range of highly heterogeneous monumental stone materials. In this work, we develop a facile and versatile method to systematically study the consolidating mechanisms in action using a surface forces apparatus (SFA) with real-time force sensing and an X-ray surface forces apparatus (X-SFA). We directly assess the mechanical tensile strength of nanosilica-treated single mineral contacts and show a sharp increase in their cohesion. The smallest used nanoparticles provide an order of magnitude stronger contacts. We further resolve the microstructures and forces acting during evaporation-driven, capillary-force-induced nanoparticle aggregation processes, highlighting the importance of the interactions between the nanoparticles and the confining mineral walls. Our novel SFA-based approach offers insight into nano- and microscale mechanisms of consolidating silica treatments, and it can aid the design of nanomaterials used in stone consolidation.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Dziadkowiec, Joanna ; Cheng, Hsiu-Wei ; Ludwig, Michael ; Ban, Matea ; Tausendpfund, Timon Pascal ; von Klitzing, Regine ; Mezger, Markus ; Valtiner, Markus
Art des Eintrags: Zweitveröffentlichung
Titel: Cohesion Gain Induced by Nanosilica Consolidants for Monumental Stone Restoration
Sprache: Englisch
Publikationsjahr: 10 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Ort der Erstveröffentlichung: Washington, DC
Verlag: American Chemical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Langmuir
Jahrgang/Volume einer Zeitschrift: 38
(Heft-)Nummer: 22
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00026634
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26634
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Mineral nanoparticle suspensions with consolidating properties have been successfully applied in the restoration of weathered architectural surfaces. However, the design of these consolidants is usually stone-specific and based on trial and error, which prevents their robust operation for a wide range of highly heterogeneous monumental stone materials. In this work, we develop a facile and versatile method to systematically study the consolidating mechanisms in action using a surface forces apparatus (SFA) with real-time force sensing and an X-ray surface forces apparatus (X-SFA). We directly assess the mechanical tensile strength of nanosilica-treated single mineral contacts and show a sharp increase in their cohesion. The smallest used nanoparticles provide an order of magnitude stronger contacts. We further resolve the microstructures and forces acting during evaporation-driven, capillary-force-induced nanoparticle aggregation processes, highlighting the importance of the interactions between the nanoparticles and the confining mineral walls. Our novel SFA-based approach offers insight into nano- and microscale mechanisms of consolidating silica treatments, and it can aid the design of nanomaterials used in stone consolidation.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-266345
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 670 Industrielle und handwerkliche Fertigung
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM) > Soft Matter at Interfaces (SMI)
Hinterlegungsdatum: 10 Sep 2024 07:33
Letzte Änderung: 18 Sep 2024 10:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen