TU Darmstadt / ULB / TUbiblio

The Influence of Vegetation on Sentinel-1 Intensity Time Series Using NDVI and in-Situ Data in Peatlands: A Case Study

Krzepek, Katrin ; Günther, Anke ; Huth, Vytas ; Jansen, Florian ; Iwaszczuk, Dorota
Hrsg.: IEEE (2024)
The Influence of Vegetation on Sentinel-1 Intensity Time Series Using NDVI and in-Situ Data in Peatlands: A Case Study.
IGARSS 2024. Athens, Greece (07.07.2024-12.07.2024)
doi: 10.1109/IGARSS53475.2024.10642399
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Surface roughness and dielectric properties affect the synthetic aperture radar (SAR) signal. For this reason, SAR time series can be used to measure soil moisture or identify vegetation cycles. Moisture and vegetation are key factors that influence several ecological processes in peatland ecosystems. This case study deals with the influence of vegetation on the SAR signal in two study areas and its reduction in order to increase the correlation between SAR signal and water table depth (WTD). One drained and one rewetted peatland serve as study areas. The measured data SAR, WTD and two vegetation parameters (normalized difference vegetation index (NDVI) and Greeness) are represented by empirically fitted sine functions. By subtracting the NDVI fit from the SAR fit, an increase in the Pearson correlation coefficient from 0.55 to 0.88 can be achieved for the drained peatland in our case study.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Krzepek, Katrin ; Günther, Anke ; Huth, Vytas ; Jansen, Florian ; Iwaszczuk, Dorota
Art des Eintrags: Bibliographie
Titel: The Influence of Vegetation on Sentinel-1 Intensity Time Series Using NDVI and in-Situ Data in Peatlands: A Case Study
Sprache: Englisch
Publikationsjahr: 2024
Ort: New York, NY
Verlag: IEEE
Buchtitel: IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
Veranstaltungstitel: IGARSS 2024
Veranstaltungsort: Athens, Greece
Veranstaltungsdatum: 07.07.2024-12.07.2024
DOI: 10.1109/IGARSS53475.2024.10642399
Kurzbeschreibung (Abstract):

Surface roughness and dielectric properties affect the synthetic aperture radar (SAR) signal. For this reason, SAR time series can be used to measure soil moisture or identify vegetation cycles. Moisture and vegetation are key factors that influence several ecological processes in peatland ecosystems. This case study deals with the influence of vegetation on the SAR signal in two study areas and its reduction in order to increase the correlation between SAR signal and water table depth (WTD). One drained and one rewetted peatland serve as study areas. The measured data SAR, WTD and two vegetation parameters (normalized difference vegetation index (NDVI) and Greeness) are represented by empirically fitted sine functions. By subtracting the NDVI fit from the SAR fit, an increase in the Pearson correlation coefficient from 0.55 to 0.88 can be achieved for the drained peatland in our case study.

Freie Schlagworte: Synthetic Aperture Radar, Peatlands, Water Table Depth, Vegetation, Curve Fitting
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie > Fernerkundung und Bildanalyse
Hinterlegungsdatum: 10 Sep 2024 06:39
Letzte Änderung: 10 Sep 2024 06:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen