TU Darmstadt / ULB / TUbiblio

On the complexity of equational decision problems for finite height complemented and orthocomplemented modular lattices

Herrmann, Christian (2022)
On the complexity of equational decision problems for finite height complemented and orthocomplemented modular lattices.
In: Algebra universalis, 83 (1)
doi: 10.1007/s00012-021-00760-3
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We study the computational complexity of the satisfiability problem and the complement of the equivalence problem for complemented (orthocomplemented) modular lattices L and classes thereof. Concerning a simple L of finite height, NP-hardness is shown for both problems. Moreover, both problems are shown to be polynomial-time equivalent to the same feasibility problem over the division ring D whenever L is the subspace lattice of a D-vector space of finite dimension at least 3. Considering the class of all finite dimensional Hilbert spaces, the equivalence problem for the class of subspace ortholattices is shown to be polynomial-time equivalent to that for the class of endomorphism ∗-rings with pseudo-inversion; moreover, we derive completeness for the complement of the Boolean part of the nondeterministic Blum-Shub-Smale model of real computation without constants. This result extends to the additive category of finite dimensional Hilbert spaces, enriched by adjunction and pseudo-inversion.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Herrmann, Christian
Art des Eintrags: Bibliographie
Titel: On the complexity of equational decision problems for finite height complemented and orthocomplemented modular lattices
Sprache: Englisch
Publikationsjahr: 31 Dezember 2022
Ort: Basel
Verlag: Springer International Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Algebra universalis
Jahrgang/Volume einer Zeitschrift: 83
(Heft-)Nummer: 1
Kollation: 28 Seiten
DOI: 10.1007/s00012-021-00760-3
Zugehörige Links:
Kurzbeschreibung (Abstract):

We study the computational complexity of the satisfiability problem and the complement of the equivalence problem for complemented (orthocomplemented) modular lattices L and classes thereof. Concerning a simple L of finite height, NP-hardness is shown for both problems. Moreover, both problems are shown to be polynomial-time equivalent to the same feasibility problem over the division ring D whenever L is the subspace lattice of a D-vector space of finite dimension at least 3. Considering the class of all finite dimensional Hilbert spaces, the equivalence problem for the class of subspace ortholattices is shown to be polynomial-time equivalent to that for the class of endomorphism ∗-rings with pseudo-inversion; moreover, we derive completeness for the complement of the Boolean part of the nondeterministic Blum-Shub-Smale model of real computation without constants. This result extends to the additive category of finite dimensional Hilbert spaces, enriched by adjunction and pseudo-inversion.

Freie Schlagworte: Ortholattice of subspaces, Matrix*-ring, Complemented modular lattice, Satisfiability problems, Complexity, Hilbert category
ID-Nummer: Artikel-ID: 5
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Logik
Hinterlegungsdatum: 05 Sep 2024 07:14
Letzte Änderung: 05 Sep 2024 11:44
PPN: 521125219
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen