Xiao, Yu ; Rao, Zhiqiang ; Chen, Guoxing ; Yang, Yuantao ; Yoon, Songhak ; Liu, Lina ; Huang, Zei ; Widenmeyer, Marc ; Guo, Heng ; Homm, Gert ; Kunz, Ulrike ; Liu, Xingmin ; Ionescu, Emanuel ; Molina-Luna, Leopoldo ; Tu, Xin ; Zhou, Ying ; Weidenkaff, Anke (2024)
Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation.
In: Angewandte Chemie International Edition
doi: 10.1002/anie.202404196
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In this study, we present a novel plasma-enabled strategy for the rapid breakdown of various types of plastic wastes, including mixtures, into high-value carbon nanomaterials and hydrogen. The H2 yield and selectivity achieved through the catalyst-free plasma-enabled strategy are 14.2 and 5.9 times higher, respectively, compared to those obtained with conventional thermal pyrolysis. It is noteworthy that this catalyst-free plasma alone approach yields a significantly higher energy yield of H2 (gH2/kWh) compared to other pyrolysis processes. By coupling plasma pyrolysis with thermal catalytic process, employing of 1 wt.% M/CeO2 atomically dispersed catalysts can further enhance hydrogen production. Specifically, the 1 wt.% Co/CeO2 catalyst demonstrated excellent catalytic performance throughout the 10 cycles of plastic waste decomposition, achieving the highest H2 yield of 46.7 mmol/gplastic (equivalent to 64.4% of theoretical H2 production) and nearly 100% hydrogen atom recovery efficiency at the 7th cycle. Notably, the H2 yield achieved over the atomically dispersed Fe on CeO2 surface in the integrated plasma-thermal catalytic process is comparable to that obtained with Fe particles on CeO2 surface (10 wt.%). This innovative and straightforward approach provides a promising and expedient strategy for continuously converting diverse plastic waste streams into high-value products conducive to a circular plastic economy.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Xiao, Yu ; Rao, Zhiqiang ; Chen, Guoxing ; Yang, Yuantao ; Yoon, Songhak ; Liu, Lina ; Huang, Zei ; Widenmeyer, Marc ; Guo, Heng ; Homm, Gert ; Kunz, Ulrike ; Liu, Xingmin ; Ionescu, Emanuel ; Molina-Luna, Leopoldo ; Tu, Xin ; Zhou, Ying ; Weidenkaff, Anke |
Art des Eintrags: | Bibliographie |
Titel: | Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation |
Sprache: | Englisch |
Publikationsjahr: | 20 August 2024 |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Angewandte Chemie International Edition |
DOI: | 10.1002/anie.202404196 |
Kurzbeschreibung (Abstract): | In this study, we present a novel plasma-enabled strategy for the rapid breakdown of various types of plastic wastes, including mixtures, into high-value carbon nanomaterials and hydrogen. The H2 yield and selectivity achieved through the catalyst-free plasma-enabled strategy are 14.2 and 5.9 times higher, respectively, compared to those obtained with conventional thermal pyrolysis. It is noteworthy that this catalyst-free plasma alone approach yields a significantly higher energy yield of H2 (gH2/kWh) compared to other pyrolysis processes. By coupling plasma pyrolysis with thermal catalytic process, employing of 1 wt.% M/CeO2 atomically dispersed catalysts can further enhance hydrogen production. Specifically, the 1 wt.% Co/CeO2 catalyst demonstrated excellent catalytic performance throughout the 10 cycles of plastic waste decomposition, achieving the highest H2 yield of 46.7 mmol/gplastic (equivalent to 64.4% of theoretical H2 production) and nearly 100% hydrogen atom recovery efficiency at the 7th cycle. Notably, the H2 yield achieved over the atomically dispersed Fe on CeO2 surface in the integrated plasma-thermal catalytic process is comparable to that obtained with Fe particles on CeO2 surface (10 wt.%). This innovative and straightforward approach provides a promising and expedient strategy for continuously converting diverse plastic waste streams into high-value products conducive to a circular plastic economy. |
ID-Nummer: | Artikel-ID: e202404196 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement |
Hinterlegungsdatum: | 29 Aug 2024 12:46 |
Letzte Änderung: | 29 Aug 2024 12:53 |
PPN: | 520992954 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |