TU Darmstadt / ULB / TUbiblio

Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation

Xiao, Yu ; Rao, Zhiqiang ; Chen, Guoxing ; Yang, Yuantao ; Yoon, Songhak ; Liu, Lina ; Huang, Zei ; Widenmeyer, Marc ; Guo, Heng ; Homm, Gert ; Kunz, Ulrike ; Liu, Xingmin ; Ionescu, Emanuel ; Molina-Luna, Leopoldo ; Tu, Xin ; Zhou, Ying ; Weidenkaff, Anke (2024)
Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation.
In: Angewandte Chemie International Edition
doi: 10.1002/anie.202404196
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this study, we present a novel plasma-enabled strategy for the rapid breakdown of various types of plastic wastes, including mixtures, into high-value carbon nanomaterials and hydrogen. The H2 yield and selectivity achieved through the catalyst-free plasma-enabled strategy are 14.2 and 5.9 times higher, respectively, compared to those obtained with conventional thermal pyrolysis. It is noteworthy that this catalyst-free plasma alone approach yields a significantly higher energy yield of H2 (gH2/kWh) compared to other pyrolysis processes. By coupling plasma pyrolysis with thermal catalytic process, employing of 1 wt.% M/CeO2 atomically dispersed catalysts can further enhance hydrogen production. Specifically, the 1 wt.% Co/CeO2 catalyst demonstrated excellent catalytic performance throughout the 10 cycles of plastic waste decomposition, achieving the highest H2 yield of 46.7 mmol/gplastic (equivalent to 64.4% of theoretical H2 production) and nearly 100% hydrogen atom recovery efficiency at the 7th cycle. Notably, the H2 yield achieved over the atomically dispersed Fe on CeO2 surface in the integrated plasma-thermal catalytic process is comparable to that obtained with Fe particles on CeO2 surface (10 wt.%). This innovative and straightforward approach provides a promising and expedient strategy for continuously converting diverse plastic waste streams into high-value products conducive to a circular plastic economy.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Xiao, Yu ; Rao, Zhiqiang ; Chen, Guoxing ; Yang, Yuantao ; Yoon, Songhak ; Liu, Lina ; Huang, Zei ; Widenmeyer, Marc ; Guo, Heng ; Homm, Gert ; Kunz, Ulrike ; Liu, Xingmin ; Ionescu, Emanuel ; Molina-Luna, Leopoldo ; Tu, Xin ; Zhou, Ying ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation
Sprache: Englisch
Publikationsjahr: 20 August 2024
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Angewandte Chemie International Edition
DOI: 10.1002/anie.202404196
Kurzbeschreibung (Abstract):

In this study, we present a novel plasma-enabled strategy for the rapid breakdown of various types of plastic wastes, including mixtures, into high-value carbon nanomaterials and hydrogen. The H2 yield and selectivity achieved through the catalyst-free plasma-enabled strategy are 14.2 and 5.9 times higher, respectively, compared to those obtained with conventional thermal pyrolysis. It is noteworthy that this catalyst-free plasma alone approach yields a significantly higher energy yield of H2 (gH2/kWh) compared to other pyrolysis processes. By coupling plasma pyrolysis with thermal catalytic process, employing of 1 wt.% M/CeO2 atomically dispersed catalysts can further enhance hydrogen production. Specifically, the 1 wt.% Co/CeO2 catalyst demonstrated excellent catalytic performance throughout the 10 cycles of plastic waste decomposition, achieving the highest H2 yield of 46.7 mmol/gplastic (equivalent to 64.4% of theoretical H2 production) and nearly 100% hydrogen atom recovery efficiency at the 7th cycle. Notably, the H2 yield achieved over the atomically dispersed Fe on CeO2 surface in the integrated plasma-thermal catalytic process is comparable to that obtained with Fe particles on CeO2 surface (10 wt.%). This innovative and straightforward approach provides a promising and expedient strategy for continuously converting diverse plastic waste streams into high-value products conducive to a circular plastic economy.

ID-Nummer: Artikel-ID: e202404196
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 29 Aug 2024 12:46
Letzte Änderung: 29 Aug 2024 12:53
PPN: 520992954
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen