Liu, Tianyi ; Deram, Sai Pavan ; Ardah, Khaled ; Haardt, Martin ; Pfetsch, Marc E. ; Pesavento, Marius (2024)
Gridless Parameter Estimation in Partly Calibrated Rectangular Arrays.
doi: 10.48550/arXiv.2406.16041
Report, Bibliographie
Kurzbeschreibung (Abstract)
Spatial frequency estimation from a mixture of noisy sinusoids finds applications in various fields. While subspace-based methods offer cost-effective super-resolution parameter estimation, they demand precise array calibration, posing challenges for large antennas. In contrast, sparsity-based approaches outperform subspace methods, especially in scenarios with limited snapshots or correlated sources. This study focuses on direction-of-arrival (DOA) estimation using a partly calibrated rectangular array with fully calibrated subarrays. A gridless sparse formulation leveraging shift invariances in the array is developed, yielding two competitive algorithms under the alternating direction method of multipliers (ADMM) and successive convex approximation frameworks, respectively. Numerical simulations show the superior error performance of our proposed method, particularly in highly correlated scenarios, compared to the conventional subspace-based methods. It is demonstrated that the proposed formulation can also be adopted in the fully calibrated case to improve the robustness of the subspace-based methods to the source correlation. Furthermore, we provide a generalization of the proposed method to a more challenging case where a part of the sensors is unobservable due to failures.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2024 |
Autor(en): | Liu, Tianyi ; Deram, Sai Pavan ; Ardah, Khaled ; Haardt, Martin ; Pfetsch, Marc E. ; Pesavento, Marius |
Art des Eintrags: | Bibliographie |
Titel: | Gridless Parameter Estimation in Partly Calibrated Rectangular Arrays |
Sprache: | Englisch |
Publikationsjahr: | 23 Juni 2024 |
Verlag: | arXiv |
Reihe: | Signal Processing |
Kollation: | 16 Seiten |
DOI: | 10.48550/arXiv.2406.16041 |
URL / URN: | https://arxiv.org/abs/2406.16041 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Spatial frequency estimation from a mixture of noisy sinusoids finds applications in various fields. While subspace-based methods offer cost-effective super-resolution parameter estimation, they demand precise array calibration, posing challenges for large antennas. In contrast, sparsity-based approaches outperform subspace methods, especially in scenarios with limited snapshots or correlated sources. This study focuses on direction-of-arrival (DOA) estimation using a partly calibrated rectangular array with fully calibrated subarrays. A gridless sparse formulation leveraging shift invariances in the array is developed, yielding two competitive algorithms under the alternating direction method of multipliers (ADMM) and successive convex approximation frameworks, respectively. Numerical simulations show the superior error performance of our proposed method, particularly in highly correlated scenarios, compared to the conventional subspace-based methods. It is demonstrated that the proposed formulation can also be adopted in the fully calibrated case to improve the robustness of the subspace-based methods to the source correlation. Furthermore, we provide a generalization of the proposed method to a more challenging case where a part of the sensors is unobservable due to failures. |
Zusätzliche Informationen: | 1. Version |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Optimierung 04 Fachbereich Mathematik > Optimierung > Discrete Optimization |
Hinterlegungsdatum: | 27 Sep 2024 10:29 |
Letzte Änderung: | 19 Dez 2024 11:06 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |