Shen, Yuesong ; Daheim, Nico ; Cong, Bai ; Nickl, Peter ; Marconi, Gian Maria ; Bazan, Clement ; Yokota, Rio ; Gurevych, Iryna ; Cremers, Daniel ; Khan, Mohammad Emtiyaz ; Möllenhoff, Thomas (2024)
Variational Learning is Effective for Large Deep Networks.
41th International Conference on Machine Learning. Vienna, Austria (21.07.2024 - 27.07.2024)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We give extensive empirical evidence against the common belief that variational learning is ineffective for large neural networks. We show that an optimizer called Improved Variational Online Newton (IVON) consistently matches or outperforms Adam for training large networks such as GPT-2 and ResNets from scratch. IVON’s computational costs are nearly identical to Adam but its predictive uncertainty is better. We show several new use cases of IVON where we improve finetuning and model merging in Large Language Models, accurately predict generalization error, and faithfully estimate sensitivity to data. We find overwhelming evidence that variational learning is effective. Code is available at https://github.com/team-approx-bayes/ivon.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Shen, Yuesong ; Daheim, Nico ; Cong, Bai ; Nickl, Peter ; Marconi, Gian Maria ; Bazan, Clement ; Yokota, Rio ; Gurevych, Iryna ; Cremers, Daniel ; Khan, Mohammad Emtiyaz ; Möllenhoff, Thomas |
Art des Eintrags: | Bibliographie |
Titel: | Variational Learning is Effective for Large Deep Networks |
Sprache: | Englisch |
Publikationsjahr: | 28 Juli 2024 |
Verlag: | MLResearch Press |
Buchtitel: | Proceedings of the 41st International Conference on Machine Learning |
Reihe: | Proceedings of Machine Learning Research |
Band einer Reihe: | 235 |
Veranstaltungstitel: | 41th International Conference on Machine Learning |
Veranstaltungsort: | Vienna, Austria |
Veranstaltungsdatum: | 21.07.2024 - 27.07.2024 |
URL / URN: | https://proceedings.mlr.press/v235/shen24b.html |
Kurzbeschreibung (Abstract): | We give extensive empirical evidence against the common belief that variational learning is ineffective for large neural networks. We show that an optimizer called Improved Variational Online Newton (IVON) consistently matches or outperforms Adam for training large networks such as GPT-2 and ResNets from scratch. IVON’s computational costs are nearly identical to Adam but its predictive uncertainty is better. We show several new use cases of IVON where we improve finetuning and model merging in Large Language Models, accurately predict generalization error, and faithfully estimate sensitivity to data. We find overwhelming evidence that variational learning is effective. Code is available at https://github.com/team-approx-bayes/ivon. |
Freie Schlagworte: | UKP_p_seditrah_factcheck |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 27 Aug 2024 13:13 |
Letzte Änderung: | 27 Aug 2024 13:13 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |