Waldis, Andreas ; Hou, Yufang ; Gurevych, Iryna (2024)
How to Handle Different Types of Out-of-Distribution Scenarios in Computational Argumentation? A Comprehensive and Fine-Grained Field Study.
The 62nd Annual Meeting of the Association for Computational Linguistics. Bangkok, Thailand (12-16.08.2024)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
The advent of pre-trained Language Models (LMs) has markedly advanced natural language processing, but their efficacy in out-of-distribution (OOD) scenarios remains a significant challenge. Computational argumentation (CA), modeling human argumentation processes, is a field notably impacted by these challenges because complex annotation schemes and high annotation costs naturally lead to resources barely covering the multiplicity of available text sources and topics. Due to this data scarcity, generalization to data from uncovered covariant distributions is a common challenge for CA tasks like stance detection or argument classification. This work systematically assesses LMs’ capabilities for such OOD scenarios. While previous work targets specific OOD types like topic shifts or OOD uniformly, we address three prevalent OOD scenarios in CA: topic shift, domain shift, and language shift. Our findings challenge the previously asserted general superiority of in-context learning (ICL) for OOD. We find that the efficacy of such learning paradigms varies with the type of OOD. Specifically, while ICL excels for domain shifts, prompt-based fine-tuning surpasses for topic shifts. To sum up, we navigate the heterogeneity of OOD scenarios in CA and empirically underscore the potential of base-sized LMs in overcoming these challenges.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Waldis, Andreas ; Hou, Yufang ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | How to Handle Different Types of Out-of-Distribution Scenarios in Computational Argumentation? A Comprehensive and Fine-Grained Field Study |
Sprache: | Englisch |
Publikationsjahr: | August 2024 |
Ort: | Bangkok, Thailand |
Verlag: | Association for Computational Linguistics |
Buchtitel: | Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) |
Veranstaltungstitel: | The 62nd Annual Meeting of the Association for Computational Linguistics |
Veranstaltungsort: | Bangkok, Thailand |
Veranstaltungsdatum: | 12-16.08.2024 |
URL / URN: | https://aclanthology.org/2024.acl-long.795/ |
Kurzbeschreibung (Abstract): | The advent of pre-trained Language Models (LMs) has markedly advanced natural language processing, but their efficacy in out-of-distribution (OOD) scenarios remains a significant challenge. Computational argumentation (CA), modeling human argumentation processes, is a field notably impacted by these challenges because complex annotation schemes and high annotation costs naturally lead to resources barely covering the multiplicity of available text sources and topics. Due to this data scarcity, generalization to data from uncovered covariant distributions is a common challenge for CA tasks like stance detection or argument classification. This work systematically assesses LMs’ capabilities for such OOD scenarios. While previous work targets specific OOD types like topic shifts or OOD uniformly, we address three prevalent OOD scenarios in CA: topic shift, domain shift, and language shift. Our findings challenge the previously asserted general superiority of in-context learning (ICL) for OOD. We find that the efficacy of such learning paradigms varies with the type of OOD. Specifically, while ICL excels for domain shifts, prompt-based fine-tuning surpasses for topic shifts. To sum up, we navigate the heterogeneity of OOD scenarios in CA and empirically underscore the potential of base-sized LMs in overcoming these challenges. |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 11 Sep 2024 08:41 |
Letzte Änderung: | 29 Okt 2024 10:02 |
PPN: | 522525601 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |