Wagner, Lars ; Jourdan, Sara ; Mayer, Leon ; Müller, Carolin ; Bernhard, Lukas ; Kolb, Sven ; Harb, Farid ; Jell, Alissa ; Berlet, Maximilian ; Feussner, Hubertus ; Buxmann, Peter ; Knoll, Alois ; Wilhelm, Dirk (2024)
Robotic scrub nurse to anticipate surgical instruments based on real-time laparoscopic video analysis.
In: Nature Communications Medicine, 4
doi: 10.1038/s43856-024-00581-0
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Background Machine learning and robotics technologies are increasingly being used in the healthcare domain to improve the quality and efficiency of surgeries and to address challenges such as staff shortages. Robotic scrub nurses in particular offer great potential to address staff shortages by assuming nursing tasks such as the handover of surgical instruments.
Methods We introduce a robotic scrub nurse system designed to enhance the quality of surgeries and efficiency of surgical workflows by predicting and delivering the required surgical instruments based on real-time laparoscopic video analysis. We propose a three-stage deep learning architecture consisting of a single frame-, temporal multi frame-, and informed model to anticipate surgical instruments. The anticipation model was trained on a total of 62 laparoscopic cholecystectomies.
Results Here, we show that our prediction system can accurately anticipate 71.54% of the surgical instruments required during laparoscopic cholecystectomies in advance, facilitating a smoother surgical workflow and reducing the need for verbal communication. As the instruments in the left working trocar are changed less frequently and according to a standardized procedure, the prediction system works particularly well for this trocar.
Conclusions The robotic scrub nurse thus acts as a mind reader and helps to mitigate staff shortages by taking over a great share of the workload during surgeries while additionally enabling an enhanced process standardization.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Wagner, Lars ; Jourdan, Sara ; Mayer, Leon ; Müller, Carolin ; Bernhard, Lukas ; Kolb, Sven ; Harb, Farid ; Jell, Alissa ; Berlet, Maximilian ; Feussner, Hubertus ; Buxmann, Peter ; Knoll, Alois ; Wilhelm, Dirk |
Art des Eintrags: | Bibliographie |
Titel: | Robotic scrub nurse to anticipate surgical instruments based on real-time laparoscopic video analysis |
Sprache: | Englisch |
Publikationsjahr: | 2 August 2024 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Nature Communications Medicine |
Jahrgang/Volume einer Zeitschrift: | 4 |
DOI: | 10.1038/s43856-024-00581-0 |
URL / URN: | https://www.nature.com/articles/s43856-024-00581-0 |
Kurzbeschreibung (Abstract): | Background Machine learning and robotics technologies are increasingly being used in the healthcare domain to improve the quality and efficiency of surgeries and to address challenges such as staff shortages. Robotic scrub nurses in particular offer great potential to address staff shortages by assuming nursing tasks such as the handover of surgical instruments. Methods We introduce a robotic scrub nurse system designed to enhance the quality of surgeries and efficiency of surgical workflows by predicting and delivering the required surgical instruments based on real-time laparoscopic video analysis. We propose a three-stage deep learning architecture consisting of a single frame-, temporal multi frame-, and informed model to anticipate surgical instruments. The anticipation model was trained on a total of 62 laparoscopic cholecystectomies. Results Here, we show that our prediction system can accurately anticipate 71.54% of the surgical instruments required during laparoscopic cholecystectomies in advance, facilitating a smoother surgical workflow and reducing the need for verbal communication. As the instruments in the left working trocar are changed less frequently and according to a standardized procedure, the prediction system works particularly well for this trocar. Conclusions The robotic scrub nurse thus acts as a mind reader and helps to mitigate staff shortages by taking over a great share of the workload during surgeries while additionally enabling an enhanced process standardization. |
Fachbereich(e)/-gebiet(e): | 01 Fachbereich Rechts- und Wirtschaftswissenschaften 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Wirtschaftsinformatik 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Software Business & Information Management |
Hinterlegungsdatum: | 27 Aug 2024 08:29 |
Letzte Änderung: | 27 Aug 2024 08:29 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |