TU Darmstadt / ULB / TUbiblio

Unlocking AI’s Potential : Human Collaboration as the Catalyst

Buxmann, Peter ; Ellenrieder, Sara (2024)
Unlocking AI’s Potential : Human Collaboration as the Catalyst.
In: WEIZENBAUM JOURNAL OF THE DIGITAL SOCIETY, 4 (1)
doi: 10.34669/wi.wjds/4.1.7
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Rapid advances in artificial intelligence (AI) have fueled high expectations for the technology’s potential to fundamentally transform our economy and society through automation. However, given the inscrutability and, sometimes, susceptibility to error of AI systems, we argue that the focus should shift towards fostering effective human-AI collaboration rather than pursuing automation alone. In this context, system decisions must be made available to decision-makers in an explainable and understandable manner, as further required by the EU’s recently passed AI Act. Research shows that there is potential for humans to learn from explainable AI systems and improve their own performance over time. Meanwhile, in addition to enabling humans to benefit from working with AI systems on various everyday tasks, such collaboration ensures the safe and reliable use of AI systems, especially in high-risk areas such as medicine, where human oversight remains paramount.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Buxmann, Peter ; Ellenrieder, Sara
Art des Eintrags: Bibliographie
Titel: Unlocking AI’s Potential : Human Collaboration as the Catalyst
Sprache: Englisch
Publikationsjahr: 27 Mai 2024
Ort: Berlin
Verlag: Weizenbaum-Institut e. V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: WEIZENBAUM JOURNAL OF THE DIGITAL SOCIETY
Jahrgang/Volume einer Zeitschrift: 4
(Heft-)Nummer: 1
DOI: 10.34669/wi.wjds/4.1.7
URL / URN: https://ojs.weizenbaum-institut.de/index.php/wjds/article/vi...
Kurzbeschreibung (Abstract):

Rapid advances in artificial intelligence (AI) have fueled high expectations for the technology’s potential to fundamentally transform our economy and society through automation. However, given the inscrutability and, sometimes, susceptibility to error of AI systems, we argue that the focus should shift towards fostering effective human-AI collaboration rather than pursuing automation alone. In this context, system decisions must be made available to decision-makers in an explainable and understandable manner, as further required by the EU’s recently passed AI Act. Research shows that there is potential for humans to learn from explainable AI systems and improve their own performance over time. Meanwhile, in addition to enabling humans to benefit from working with AI systems on various everyday tasks, such collaboration ensures the safe and reliable use of AI systems, especially in high-risk areas such as medicine, where human oversight remains paramount.

Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Wirtschaftsinformatik
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Software Business & Information Management
Hinterlegungsdatum: 27 Aug 2024 08:25
Letzte Änderung: 27 Aug 2024 08:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen