Desenfans, Philip ; Vancayseele, Emma ; Bundschuh, Jonas ; De Gersem, Herbert ; Gong, Zifeng ; Vanoost, Dries ; Gryllias, Konstantinos ; Pissoort, Davy (2024)
A Boundary-Preserving Non-Conformal Mapping for Radial Rotor Eccentricity in Finite Element Simulations of Electrical Machines.
In: IEEE Transactions on Magnetics, 60 (8)
doi: 10.1109/tmag.2024.3420813
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Detailed field solutions obtained by the finite element method (FEM) for electrical machines come at a large computational cost. By introducing a novel non-conformal mapping (NCM), which transforms a rotor-centric air-gap domain to a rotor-eccentric air-gap domain, the computational cost and discretization error associated with remeshing are avoided. In contrast to the existing NCM approaches, the proposed solution preserves the boundaries of the air-gap domain concerning a change in rotor eccentricity. Resultingly, the interpolation error at the domain intersections with the FEM stator and rotor models is minimized, limited only by a moving band, which allows the rotation of the rotor. A general validation of a rotor-eccentric induction motor using the novel NCM is performed. Thereafter, a thorough comparison between the NCM and remeshing in terms of mesh quality and computational cost is made. For rotor eccentricities below 90% of the air gap, mesh quality is found to be in line with reference methods. Moreover, due to the efficient mapping and the sole requirement of a single moving band to accommodate rotor rotation, the NCM results in a 50% reduction of the total computation time compared with remeshing and a 12% reduction compared with a recent reference NCM.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Desenfans, Philip ; Vancayseele, Emma ; Bundschuh, Jonas ; De Gersem, Herbert ; Gong, Zifeng ; Vanoost, Dries ; Gryllias, Konstantinos ; Pissoort, Davy |
Art des Eintrags: | Bibliographie |
Titel: | A Boundary-Preserving Non-Conformal Mapping for Radial Rotor Eccentricity in Finite Element Simulations of Electrical Machines |
Sprache: | Englisch |
Publikationsjahr: | August 2024 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Transactions on Magnetics |
Jahrgang/Volume einer Zeitschrift: | 60 |
(Heft-)Nummer: | 8 |
Kollation: | 8 Seiten |
DOI: | 10.1109/tmag.2024.3420813 |
Kurzbeschreibung (Abstract): | Detailed field solutions obtained by the finite element method (FEM) for electrical machines come at a large computational cost. By introducing a novel non-conformal mapping (NCM), which transforms a rotor-centric air-gap domain to a rotor-eccentric air-gap domain, the computational cost and discretization error associated with remeshing are avoided. In contrast to the existing NCM approaches, the proposed solution preserves the boundaries of the air-gap domain concerning a change in rotor eccentricity. Resultingly, the interpolation error at the domain intersections with the FEM stator and rotor models is minimized, limited only by a moving band, which allows the rotation of the rotor. A general validation of a rotor-eccentric induction motor using the novel NCM is performed. Thereafter, a thorough comparison between the NCM and remeshing in terms of mesh quality and computational cost is made. For rotor eccentricities below 90% of the air gap, mesh quality is found to be in line with reference methods. Moreover, due to the efficient mapping and the sole requirement of a single moving band to accommodate rotor rotation, the NCM results in a 50% reduction of the total computation time compared with remeshing and a 12% reduction compared with a recent reference NCM. |
ID-Nummer: | Artikel-ID: 7402208 |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Theorie Elektromagnetischer Felder 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder |
Hinterlegungsdatum: | 26 Aug 2024 10:38 |
Letzte Änderung: | 26 Aug 2024 10:38 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |