TU Darmstadt / ULB / TUbiblio

Systematic Task Exploration with LLMs: A Study in Citation Text Generation

Şahinuç, Furkan ; Kuznetsov, Ilia ; Hou, Yufang ; Gurevych, Iryna (2024)
Systematic Task Exploration with LLMs: A Study in Citation Text Generation.
62nd Annual Meeting of the Association for Computational Linguistics. Bangkok, Thailand (11.08.2024 - 16.08.2024)
doi: 10.18653/v1/2024.acl-long.265
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation – a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Şahinuç, Furkan ; Kuznetsov, Ilia ; Hou, Yufang ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Systematic Task Exploration with LLMs: A Study in Citation Text Generation
Sprache: Englisch
Publikationsjahr: August 2024
Verlag: ACL
Buchtitel: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Veranstaltungstitel: 62nd Annual Meeting of the Association for Computational Linguistics
Veranstaltungsort: Bangkok, Thailand
Veranstaltungsdatum: 11.08.2024 - 16.08.2024
DOI: 10.18653/v1/2024.acl-long.265
URL / URN: https://aclanthology.org/2024.acl-long.265/
Kurzbeschreibung (Abstract):

Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation – a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available.

Freie Schlagworte: UKP_p_LOEWE_Spitzenprofessur, UKP_p_InterText, UKP_p_PEER
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 20 Aug 2024 08:57
Letzte Änderung: 25 Nov 2024 13:15
PPN: 524110042
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen