Şahinuç, Furkan ; Kuznetsov, Ilia ; Hou, Yufang ; Gurevych, Iryna (2024)
Systematic Task Exploration with LLMs: A Study in Citation Text Generation.
62nd Annual Meeting of the Association for Computational Linguistics. Bangkok, Thailand (11.08.2024 - 16.08.2024)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation – a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Şahinuç, Furkan ; Kuznetsov, Ilia ; Hou, Yufang ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | Systematic Task Exploration with LLMs: A Study in Citation Text Generation |
Sprache: | Englisch |
Publikationsjahr: | August 2024 |
Verlag: | ACL |
Buchtitel: | Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) |
Veranstaltungstitel: | 62nd Annual Meeting of the Association for Computational Linguistics |
Veranstaltungsort: | Bangkok, Thailand |
Veranstaltungsdatum: | 11.08.2024 - 16.08.2024 |
URL / URN: | https://aclanthology.org/2024.acl-long.265/ |
Kurzbeschreibung (Abstract): | Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation – a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available. |
Freie Schlagworte: | UKP_p_LOEWE_Spitzenprofessur, UKP_p_InterText, UKP_p_PEER |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 20 Aug 2024 08:57 |
Letzte Änderung: | 20 Aug 2024 08:57 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |