Orth, Sebastian ; Klingbeil, Harald (2024)
Maximum length binary sequences and spectral power distribution of periodic signals.
In: EURASIP Journal on Advances in Signal Processing, 2024
doi: 10.1186/s13634-024-01177-5
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The maximum length binary sequence (MLBS) is widely used as a broadband pseudo-random noise excitation signal, for example, for system identification. Although its properties have been known for decades, misleading or inaccurate statements can be found in many references. For example, it is sometimes stated that the spectrum of the MLBS is white, whereas in other references a sinc behavior is stated. In this paper, we therefore analyze the MLBS properties based on precise definitions for the given context (time-discrete vs. time-continuous, periodic vs. non-periodic, etc.), especially with respect to Fourier analysis. Another difficulty arises from the fact that in the literature the mathematical definitions are often simplified by means of normalizations which makes the physical interpretation difficult. Therefore, special emphasis is put on scaling factors which allow such a physical interpretation.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Orth, Sebastian ; Klingbeil, Harald |
Art des Eintrags: | Bibliographie |
Titel: | Maximum length binary sequences and spectral power distribution of periodic signals |
Sprache: | Englisch |
Publikationsjahr: | 31 Juli 2024 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | EURASIP Journal on Advances in Signal Processing |
Jahrgang/Volume einer Zeitschrift: | 2024 |
DOI: | 10.1186/s13634-024-01177-5 |
Kurzbeschreibung (Abstract): | The maximum length binary sequence (MLBS) is widely used as a broadband pseudo-random noise excitation signal, for example, for system identification. Although its properties have been known for decades, misleading or inaccurate statements can be found in many references. For example, it is sometimes stated that the spectrum of the MLBS is white, whereas in other references a sinc behavior is stated. In this paper, we therefore analyze the MLBS properties based on precise definitions for the given context (time-discrete vs. time-continuous, periodic vs. non-periodic, etc.), especially with respect to Fourier analysis. Another difficulty arises from the fact that in the literature the mathematical definitions are often simplified by means of normalizations which makes the physical interpretation difficult. Therefore, special emphasis is put on scaling factors which allow such a physical interpretation. |
ID-Nummer: | Artikel-ID: 80 |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Beschleunigertechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder |
Hinterlegungsdatum: | 07 Aug 2024 10:10 |
Letzte Änderung: | 07 Aug 2024 10:10 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |