Ullmann, Sebastian ; Müller, Christopher ; Lang, Jens (2021)
Stochastic Galerkin Reduced Basis Methods for Parametrized Linear Convection−Diffusion−Reaction Equations.
In: Fluids, 6 (8)
doi: 10.3390/fluids6080263
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We consider the estimation of parameter-dependent statistics of functional outputs of steady-state convection–diffusion–reaction equations with parametrized random and deterministic inputs in the framework of linear elliptic partial differential equations. For a given value of the deterministic parameter, a stochastic Galerkin finite element (SGFE) method can estimate the statistical moments of interest of a linear output at the cost of solving a single, large, block-structured linear system of equations. We propose a stochastic Galerkin reduced basis (SGRB) method as a means to lower the computational burden when statistical outputs are required for a large number of deterministic parameter queries. Our working assumption is that we have access to the computational resources necessary to set up such a reduced-order model for a spatial-stochastic weak formulation of the parameter-dependent model equations. In this scenario, the complexity of evaluating the SGRB model for a new value of the deterministic parameter only depends on the reduced dimension. To derive an SGRB model, we project the spatial-stochastic weak solution of a parameter-dependent SGFE model onto a reduced basis generated by a proper orthogonal decomposition (POD) of snapshots of SGFE solutions at representative values of the parameter. We propose residual-corrected estimates of the parameter-dependent expectation and variance of linear functional outputs and provide respective computable error bounds. We test the SGRB method numerically for a convection–diffusion–reaction problem, choosing the convective velocity as a deterministic parameter and the parametrized reactivity or diffusivity field as a random input. Compared to a standard reduced basis model embedded in a Monte Carlo sampling procedure, the SGRB model requires a similar number of reduced basis functions to meet a given tolerance requirement. However, only a single run of the SGRB model suffices to estimate a statistical output for a new deterministic parameter value, while the standard reduced basis model must be solved for each Monte Carlo sample.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Ullmann, Sebastian ; Müller, Christopher ; Lang, Jens |
Art des Eintrags: | Bibliographie |
Titel: | Stochastic Galerkin Reduced Basis Methods for Parametrized Linear Convection−Diffusion−Reaction Equations |
Sprache: | Englisch |
Publikationsjahr: | 2021 |
Ort: | Basel |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Fluids |
Jahrgang/Volume einer Zeitschrift: | 6 |
(Heft-)Nummer: | 8 |
Kollation: | 24 Seiten |
DOI: | 10.3390/fluids6080263 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We consider the estimation of parameter-dependent statistics of functional outputs of steady-state convection–diffusion–reaction equations with parametrized random and deterministic inputs in the framework of linear elliptic partial differential equations. For a given value of the deterministic parameter, a stochastic Galerkin finite element (SGFE) method can estimate the statistical moments of interest of a linear output at the cost of solving a single, large, block-structured linear system of equations. We propose a stochastic Galerkin reduced basis (SGRB) method as a means to lower the computational burden when statistical outputs are required for a large number of deterministic parameter queries. Our working assumption is that we have access to the computational resources necessary to set up such a reduced-order model for a spatial-stochastic weak formulation of the parameter-dependent model equations. In this scenario, the complexity of evaluating the SGRB model for a new value of the deterministic parameter only depends on the reduced dimension. To derive an SGRB model, we project the spatial-stochastic weak solution of a parameter-dependent SGFE model onto a reduced basis generated by a proper orthogonal decomposition (POD) of snapshots of SGFE solutions at representative values of the parameter. We propose residual-corrected estimates of the parameter-dependent expectation and variance of linear functional outputs and provide respective computable error bounds. We test the SGRB method numerically for a convection–diffusion–reaction problem, choosing the convective velocity as a deterministic parameter and the parametrized reactivity or diffusivity field as a random input. Compared to a standard reduced basis model embedded in a Monte Carlo sampling procedure, the SGRB model requires a similar number of reduced basis functions to meet a given tolerance requirement. However, only a single run of the SGRB model suffices to estimate a statistical output for a new deterministic parameter value, while the standard reduced basis model must be solved for each Monte Carlo sample. |
Freie Schlagworte: | model order reduction, proper orthogonal decomposition, stochastic galerkin, finite elements, parametrized partial differential equation, Monte Carlo, reduced basis method, MSC: 65C30, 65N30, 65N35, 60H35, 35R60 |
Zusätzliche Informationen: | This article belongs to the Special Issue Reduced Order Models for Computational Fluid Dynamics |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen |
Hinterlegungsdatum: | 02 Aug 2024 13:15 |
Letzte Änderung: | 02 Aug 2024 13:15 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Stochastic Galerkin Reduced Basis Methods for Parametrized Linear Convection−Diffusion−Reaction Equations. (deposited 14 Nov 2023 13:43)
- Stochastic Galerkin Reduced Basis Methods for Parametrized Linear Convection−Diffusion−Reaction Equations. (deposited 02 Aug 2024 13:15) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |