TU Darmstadt / ULB / TUbiblio

Mesoporous CuFe₂O₄ Photoanodes for Solar Water Oxidation: Impact of Surface Morphology on the Photoelectrochemical Properties

Einert, Marcus ; Waheed, Arslan ; Moritz, Dominik C. ; Lauterbach, Stefan ; Kundmann, Anna ; Daemi, Sahar ; Schlaad, Helmut ; Osterloh, Frank E. ; Hofmann, Jan P. (2023)
Mesoporous CuFe₂O₄ Photoanodes for Solar Water Oxidation: Impact of Surface Morphology on the Photoelectrochemical Properties.
In: Chemistry – A European Journal, 29 (24)
doi: 10.1002/chem.202300277
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Metal oxide‐based photoelectrodes for solar water splitting often utilize nanostructures to increase the solid‐liquid interface area. This reduces charge transport distances and increases the photocurrent for materials with short minority charge carrier diffusion lengths. While the merits of nanostructuring are well established, the effect of surface order on the photocurrent and carrier recombination has not yet received much attention in the literature. To evaluate the impact of pore ordering on the photoelectrochemical properties, mesoporous CuFe₂O₄ (CFO) thin film photoanodes were prepared by dip‐coating and soft‐templating. Here, the pore order and geometry can be controlled by addition of copolymer surfactants poly(ethylene oxide)‐block‐poly(propylene oxide)‐block‐poly(ethylene oxide) (Pluronic® F‐127), polyisobutylene‐block‐poly(ethylene oxide) (PIB‐PEO) and poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) (Kraton liquid™‐PEO, KLE). The non‐ordered CFO showed the highest photocurrent density of 0.2 mA/cm² at 1.3 V vs. RHE for sulfite oxidation, but the least photocurrent density for water oxidation. Conversely, the ordered CFO presented the best photoelectrochemical water oxidation performance. These differences can be understood on the basis of the high surface area, which promotes hole transfer to sulfite (a fast hole acceptor), but retards oxidation of water (a slow hole acceptor) due to electron‐hole recombination at the defective surface. This interpretation is confirmed by intensity‐modulated photocurrent (IMPS) and vibrating Kelvin probe surface photovoltage spectroscopy (VKP‐SPS). The lowest surface recombination rate was observed for the ordered KLE‐based mesoporous CFO, which retains spherical pore shapes at the surface resulting in fewer surface defects. Overall, this work shows that the photoelectrochemical energy conversion efficiency of copper ferrite thin films is not just controlled by the surface area, but also by surface order.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Einert, Marcus ; Waheed, Arslan ; Moritz, Dominik C. ; Lauterbach, Stefan ; Kundmann, Anna ; Daemi, Sahar ; Schlaad, Helmut ; Osterloh, Frank E. ; Hofmann, Jan P.
Art des Eintrags: Bibliographie
Titel: Mesoporous CuFe₂O₄ Photoanodes for Solar Water Oxidation: Impact of Surface Morphology on the Photoelectrochemical Properties
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chemistry – A European Journal
Jahrgang/Volume einer Zeitschrift: 29
(Heft-)Nummer: 24
Kollation: 16 Seiten
DOI: 10.1002/chem.202300277
Zugehörige Links:
Kurzbeschreibung (Abstract):

Metal oxide‐based photoelectrodes for solar water splitting often utilize nanostructures to increase the solid‐liquid interface area. This reduces charge transport distances and increases the photocurrent for materials with short minority charge carrier diffusion lengths. While the merits of nanostructuring are well established, the effect of surface order on the photocurrent and carrier recombination has not yet received much attention in the literature. To evaluate the impact of pore ordering on the photoelectrochemical properties, mesoporous CuFe₂O₄ (CFO) thin film photoanodes were prepared by dip‐coating and soft‐templating. Here, the pore order and geometry can be controlled by addition of copolymer surfactants poly(ethylene oxide)‐block‐poly(propylene oxide)‐block‐poly(ethylene oxide) (Pluronic® F‐127), polyisobutylene‐block‐poly(ethylene oxide) (PIB‐PEO) and poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) (Kraton liquid™‐PEO, KLE). The non‐ordered CFO showed the highest photocurrent density of 0.2 mA/cm² at 1.3 V vs. RHE for sulfite oxidation, but the least photocurrent density for water oxidation. Conversely, the ordered CFO presented the best photoelectrochemical water oxidation performance. These differences can be understood on the basis of the high surface area, which promotes hole transfer to sulfite (a fast hole acceptor), but retards oxidation of water (a slow hole acceptor) due to electron‐hole recombination at the defective surface. This interpretation is confirmed by intensity‐modulated photocurrent (IMPS) and vibrating Kelvin probe surface photovoltage spectroscopy (VKP‐SPS). The lowest surface recombination rate was observed for the ordered KLE‐based mesoporous CFO, which retains spherical pore shapes at the surface resulting in fewer surface defects. Overall, this work shows that the photoelectrochemical energy conversion efficiency of copper ferrite thin films is not just controlled by the surface area, but also by surface order.

Freie Schlagworte: mesoporous thin-films, photoelectrochemistry, sol-gel, water oxidation
ID-Nummer: e202300277
Zusätzliche Informationen:

A previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2022-txgvp).

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 02 Aug 2024 12:54
Letzte Änderung: 02 Aug 2024 12:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen