Knecht, Stephan ; Barskiy, Danila A. ; Buntkowsky, Gerd ; Ivanov, Konstantin L. (2020)
Theoretical description of hyperpolarization formation in the SABRE-relay method.
In: The Journal of Chemical Physics, 153 (16)
doi: 10.1063/5.0023308
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
SABRE (Signal Amplification By Reversible Exchange) has become a widely used method for hyper-polarizing nuclear spins, thereby enhancing their Nuclear Magnetic Resonance (NMR) signals by orders of magnitude. In SABRE experiments, the non-equilibrium spin order is transferred from parahydrogen to a substrate in a transient organometallic complex. The applicability of SABRE is expanded by the methodology of SABRE-relay in which polarization can be relayed to a second substrate either by direct chemical exchange of hyperpolarized nuclei or by polarization transfer between two substrates in a second organometallic complex. To understand the mechanism of the polarization transfer and study the transfer efficiency, we propose a theoretical approach to SABRE-relay, which can treat both spin dynamics and chemical kinetics as well as the interplay between them. The approach is based on a set of equations for the spin density matrices of the spin systems involved (i.e., SABRE substrates and complexes), which can be solved numerically. Using this method, we perform a detailed study of polarization formation and analyze in detail the dependence of the attainable polarization level on various chemical kinetic and spin dynamic parameters. We foresee the applications of the present approach for optimizing SABRE-relay experiments with the ultimate goal of achieving maximal NMR signal enhancements for substrates of interest.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Knecht, Stephan ; Barskiy, Danila A. ; Buntkowsky, Gerd ; Ivanov, Konstantin L. |
Art des Eintrags: | Bibliographie |
Titel: | Theoretical description of hyperpolarization formation in the SABRE-relay method |
Sprache: | Englisch |
Publikationsjahr: | 2020 |
Ort: | Darmstadt |
Verlag: | American Institute of Physics |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | The Journal of Chemical Physics |
Jahrgang/Volume einer Zeitschrift: | 153 |
(Heft-)Nummer: | 16 |
Kollation: | 11 Seiten |
DOI: | 10.1063/5.0023308 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | SABRE (Signal Amplification By Reversible Exchange) has become a widely used method for hyper-polarizing nuclear spins, thereby enhancing their Nuclear Magnetic Resonance (NMR) signals by orders of magnitude. In SABRE experiments, the non-equilibrium spin order is transferred from parahydrogen to a substrate in a transient organometallic complex. The applicability of SABRE is expanded by the methodology of SABRE-relay in which polarization can be relayed to a second substrate either by direct chemical exchange of hyperpolarized nuclei or by polarization transfer between two substrates in a second organometallic complex. To understand the mechanism of the polarization transfer and study the transfer efficiency, we propose a theoretical approach to SABRE-relay, which can treat both spin dynamics and chemical kinetics as well as the interplay between them. The approach is based on a set of equations for the spin density matrices of the spin systems involved (i.e., SABRE substrates and complexes), which can be solved numerically. Using this method, we perform a detailed study of polarization formation and analyze in detail the dependence of the attainable polarization level on various chemical kinetic and spin dynamic parameters. We foresee the applications of the present approach for optimizing SABRE-relay experiments with the ultimate goal of achieving maximal NMR signal enhancements for substrates of interest. |
Freie Schlagworte: | Polarization, Exchange reactions, Chemical kinetics and dynamics, Density-matrix, Nuclear magnetic resonance |
ID-Nummer: | 164106 (2020) |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie |
Fachbereich(e)/-gebiet(e): | 07 Fachbereich Chemie 07 Fachbereich Chemie > Eduard Zintl-Institut 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie |
Hinterlegungsdatum: | 02 Aug 2024 12:54 |
Letzte Änderung: | 02 Aug 2024 12:54 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Theoretical description of hyperpolarization formation in the SABRE-relay method. (deposited 17 Jul 2023 08:28)
- Theoretical description of hyperpolarization formation in the SABRE-relay method. (deposited 02 Aug 2024 12:54) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |