TU Darmstadt / ULB / TUbiblio

Simulating and Comparing CO₂/CH₄ Separation Performance of Membrane–Zeolite Contactors by Cascade Neural Networks

Abdollahi, Seyyed Amirreza ; Andarkhor, AmirReza ; Pourahmad, Afham ; Alibak, Ali Hosin ; Alobaid, Falah ; Aghel, Babak (2023)
Simulating and Comparing CO₂/CH₄ Separation Performance of Membrane–Zeolite Contactors by Cascade Neural Networks.
In: Membranes, 13 (5)
doi: 10.3390/membranes13050526
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Separating carbon dioxide (CO₂) from gaseous streams released into the atmosphere is becoming critical due to its greenhouse effect. Membrane technology is one of the promising technologies for CO₂ capture. SAPO-34 filler was incorporated in polymeric media to synthesize mixed matrix membrane (MMM) and enhance the CO₂ separation performance of this process. Despite relatively extensive experimental studies, there are limited studies that cover the modeling aspects of CO₂ capture by MMMs. This research applies a special type of machine learning modeling scenario, namely, cascade neural networks (CNN), to simulate as well as compare the CO₂/CH₄ selectivity of a wide range of MMMs containing SAPO-34 zeolite. A combination of trial-and-error analysis and statistical accuracy monitoring has been applied to fine-tune the CNN topology. It was found that the CNN with a 4-11-1 topology has the highest accuracy for the modeling of the considered task. The designed CNN model is able to precisely predict the CO₂/CH₄ selectivity of seven different MMMs in a broad range of filler concentrations, pressures, and temperatures. The model predicts 118 actual measurements of CO₂/CH₄ selectivity with an outstanding accuracy (i.e., AARD = 2.92%, MSE = 1.55, R = 0.9964).

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Abdollahi, Seyyed Amirreza ; Andarkhor, AmirReza ; Pourahmad, Afham ; Alibak, Ali Hosin ; Alobaid, Falah ; Aghel, Babak
Art des Eintrags: Bibliographie
Titel: Simulating and Comparing CO₂/CH₄ Separation Performance of Membrane–Zeolite Contactors by Cascade Neural Networks
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Membranes
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 5
Kollation: 14 Seiten
DOI: 10.3390/membranes13050526
Zugehörige Links:
Kurzbeschreibung (Abstract):

Separating carbon dioxide (CO₂) from gaseous streams released into the atmosphere is becoming critical due to its greenhouse effect. Membrane technology is one of the promising technologies for CO₂ capture. SAPO-34 filler was incorporated in polymeric media to synthesize mixed matrix membrane (MMM) and enhance the CO₂ separation performance of this process. Despite relatively extensive experimental studies, there are limited studies that cover the modeling aspects of CO₂ capture by MMMs. This research applies a special type of machine learning modeling scenario, namely, cascade neural networks (CNN), to simulate as well as compare the CO₂/CH₄ selectivity of a wide range of MMMs containing SAPO-34 zeolite. A combination of trial-and-error analysis and statistical accuracy monitoring has been applied to fine-tune the CNN topology. It was found that the CNN with a 4-11-1 topology has the highest accuracy for the modeling of the considered task. The designed CNN model is able to precisely predict the CO₂/CH₄ selectivity of seven different MMMs in a broad range of filler concentrations, pressures, and temperatures. The model predicts 118 actual measurements of CO₂/CH₄ selectivity with an outstanding accuracy (i.e., AARD = 2.92%, MSE = 1.55, R = 0.9964).

Freie Schlagworte: CO₂/CH₄ gas mixture, membrane separation, selectivity, intelligent modeling
Zusätzliche Informationen:

This article belongs to the Special Issue Advances in Membrane Technology for Environmental Protection/Remediation

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Energiesysteme und Energietechnik (EST)
Hinterlegungsdatum: 02 Aug 2024 12:52
Letzte Änderung: 02 Aug 2024 12:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen