TU Darmstadt / ULB / TUbiblio

Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation

Singh, Soumya ; Ebongue, Yvonne Eboumbou ; Rezaei, Shahed ; Birke, Kai Peter (2023)
Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation.
In: Batteries, 9 (6)
doi: 10.3390/batteries9060301
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Singh, Soumya ; Ebongue, Yvonne Eboumbou ; Rezaei, Shahed ; Birke, Kai Peter
Art des Eintrags: Bibliographie
Titel: Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Batteries
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 6
Kollation: 19 Seiten
DOI: 10.3390/batteries9060301
Zugehörige Links:
Kurzbeschreibung (Abstract):

Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.

Freie Schlagworte: Li-ion battery, battery modeling, state estimation, state of health (SOH), state of charge (SOC), hybrid modeling, physics-informed neural network (PINN), single-particle model (SPM)
Zusätzliche Informationen:

This article belongs to the Special Issue The Precise Battery—towards Digital Twins for Advanced Batteries

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Hinterlegungsdatum: 02 Aug 2024 12:52
Letzte Änderung: 02 Aug 2024 12:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen