TU Darmstadt / ULB / TUbiblio

Hole‐doped high entropy ferrites: Structure and charge compensation mechanisms in (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)₁₋ₓCaₓFeO₃

Eiselt, Luis ; Kruk, Robert ; Hahn, Horst ; Sarkar, Abhishek (2023)
Hole‐doped high entropy ferrites: Structure and charge compensation mechanisms in (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)₁₋ₓCaₓFeO₃.
In: International Journal of Applied Ceramic Technology, 20 (1)
doi: 10.1111/ijac.14150
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

High entropy oxides (HEOs) can be defined as single‐phase oxide solid solutions with five or more cations in near equiatomic proportion occupying a given cation sub‐lattice. The compositional flexibility while retaining the phase purity can be considered one of the major strengths of this materials class. Taking advantage of this aspect, here we explore the extent to which an aliovalent hole dopant can be incorporated into a perovskite‐HEO system. Nine systems, (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)₁₋ₓCaₓFeO₃, with varying amount of Ca content (x = 0–.5) are synthesized using nebulized spray pyrolysis. Single‐phase orthorhombic (Pbnm) structure can be retained up to 20% of Ca doping. Beyond 20% of Ca, a secondary rhombohedral (R‐3c) phase emerges. The ⁵⁷Fe Mössbauer spectra indicate that charge compensation occurs only via oxygen vacancy formation in the single‐phase systems containing up to 15% of Ca. In addition, partial transition from Fe³⁺ to Fe⁴⁺ occurs in the 20% Ca‐doped case. Room temperature Mössbauer spectroscopy further reflects the coexistence of multiple magnetic phases in crystallographic single‐phase (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)₁₋ₓCaₓFeO₃, which is supported by magnetometry measurements. These initial results show the potential of charge doping to tune structural–magneto–electronic properties in compositionally complex HEOs, warranting further research in this direction.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Eiselt, Luis ; Kruk, Robert ; Hahn, Horst ; Sarkar, Abhishek
Art des Eintrags: Bibliographie
Titel: Hole‐doped high entropy ferrites: Structure and charge compensation mechanisms in (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)₁₋ₓCaₓFeO₃
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Applied Ceramic Technology
Jahrgang/Volume einer Zeitschrift: 20
(Heft-)Nummer: 1
DOI: 10.1111/ijac.14150
Zugehörige Links:
Kurzbeschreibung (Abstract):

High entropy oxides (HEOs) can be defined as single‐phase oxide solid solutions with five or more cations in near equiatomic proportion occupying a given cation sub‐lattice. The compositional flexibility while retaining the phase purity can be considered one of the major strengths of this materials class. Taking advantage of this aspect, here we explore the extent to which an aliovalent hole dopant can be incorporated into a perovskite‐HEO system. Nine systems, (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)₁₋ₓCaₓFeO₃, with varying amount of Ca content (x = 0–.5) are synthesized using nebulized spray pyrolysis. Single‐phase orthorhombic (Pbnm) structure can be retained up to 20% of Ca doping. Beyond 20% of Ca, a secondary rhombohedral (R‐3c) phase emerges. The ⁵⁷Fe Mössbauer spectra indicate that charge compensation occurs only via oxygen vacancy formation in the single‐phase systems containing up to 15% of Ca. In addition, partial transition from Fe³⁺ to Fe⁴⁺ occurs in the 20% Ca‐doped case. Room temperature Mössbauer spectroscopy further reflects the coexistence of multiple magnetic phases in crystallographic single‐phase (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)₁₋ₓCaₓFeO₃, which is supported by magnetometry measurements. These initial results show the potential of charge doping to tune structural–magneto–electronic properties in compositionally complex HEOs, warranting further research in this direction.

Freie Schlagworte: magnetic materials/properties, mössbauer spectroscopy, perovskites, high entropy oxides
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 02 Aug 2024 12:52
Letzte Änderung: 02 Aug 2024 12:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen