TU Darmstadt / ULB / TUbiblio

A phase field model for fractures in ice shelves

Sondershaus, Rabea ; Humbert, Angelika ; Müller, Ralf (2022)
A phase field model for fractures in ice shelves.
In: PAMM - Proceedings in Applied Mathematics & Mechanics, 22 (1)
doi: 10.1002/pamm.202200256
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Ice shelves are large floating ice masses, that are formed when glaciers are becoming afloat at the margin of ice sheets. One dominating mass loss mechanism of ice shelves is calving, describing the detachment of icebergs at the front. Ice shelves stabilize inland ice glaciers due to buttressing. If the stabilizing effect of an ice shelf vanishes because of disintegration or thinning, the corresponding glacier accelerates resulting in sea level rise.

To describe calving and disintegration of ice shelves, it is important to investigate fracture propagation in ice. A powerful method in fracture mechanics is the phase field method which is based on Griffith's theory. It approximates cracks in a diffuse manner by using a continuous scalar field. We propose a phase field fracture model for ice considering its characteristic material properties. The material behavior of ice depends on the considered time scales. On short time scales it behaves like a solid and while it acts like a fluid on long time scales, which classifies it as a viscoelastic material of Maxwell type. This has been verified by observations. The phase field method allows us to simulate typical fracture situations of ice shelves in Antarctica and Greenland.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Sondershaus, Rabea ; Humbert, Angelika ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: A phase field model for fractures in ice shelves
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM - Proceedings in Applied Mathematics & Mechanics
Jahrgang/Volume einer Zeitschrift: 22
(Heft-)Nummer: 1
Kollation: 6 Seiten
DOI: 10.1002/pamm.202200256
Zugehörige Links:
Kurzbeschreibung (Abstract):

Ice shelves are large floating ice masses, that are formed when glaciers are becoming afloat at the margin of ice sheets. One dominating mass loss mechanism of ice shelves is calving, describing the detachment of icebergs at the front. Ice shelves stabilize inland ice glaciers due to buttressing. If the stabilizing effect of an ice shelf vanishes because of disintegration or thinning, the corresponding glacier accelerates resulting in sea level rise.

To describe calving and disintegration of ice shelves, it is important to investigate fracture propagation in ice. A powerful method in fracture mechanics is the phase field method which is based on Griffith's theory. It approximates cracks in a diffuse manner by using a continuous scalar field. We propose a phase field fracture model for ice considering its characteristic material properties. The material behavior of ice depends on the considered time scales. On short time scales it behaves like a solid and while it acts like a fluid on long time scales, which classifies it as a viscoelastic material of Maxwell type. This has been verified by observations. The phase field method allows us to simulate typical fracture situations of ice shelves in Antarctica and Greenland.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 02 Aug 2024 12:51
Letzte Änderung: 02 Aug 2024 12:51
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen