TU Darmstadt / ULB / TUbiblio

Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li₆La₃ZrTaO₁₂ Garnet

Swamy, Tushar ; Park, Richard ; Sheldon, Brian W. ; Rettenwander, Daniel ; Porz, Lukas ; Berendts, Stefan ; Uecker, Reinhard ; Carter, W. Craig ; Chiang, Yet-Ming (2018)
Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li₆La₃ZrTaO₁₂ Garnet.
In: Journal of The Electrochemical Society, 165 (16)
doi: 10.1149/2.1391814jes
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Solid electrolytes potentially enable rechargeable batteries with lithium metal anodes possessing higher energy densities than today's lithium ion batteries. To do so the solid electrolyte must suppress instabilities that lead to poor coulombic efficiency and short circuits. In this work, lithium electrodeposition was performed on single-crystal Li₆La₃ZrTaO₁₂ garnets to investigate factors governing lithium penetration through brittle electrolytes. In single crystals, grain boundaries are excluded as paths for lithium metal propagation. Vickers microindentation was used to introduce surface flaws of known size. However, operando optical microscopy revealed that lithium metal penetration propagates preferentially from a different, second class of flaws. At the perimeter of surface current collectors smaller in size than the lithium source electrode, an enhanced electrodeposition current density causes lithium filled cracks to initiate and grow to penetration, even when large Vickers defects are in proximity. Modeling the electric field distribution in the experimental cell revealed that a 5-fold enhancement in field occurs within 10 micrometers of the electrode edge and generates high local electrochemomechanical stress. This may determine the initiation sites for lithium propagation, overriding the presence of larger defects elsewhere.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Swamy, Tushar ; Park, Richard ; Sheldon, Brian W. ; Rettenwander, Daniel ; Porz, Lukas ; Berendts, Stefan ; Uecker, Reinhard ; Carter, W. Craig ; Chiang, Yet-Ming
Art des Eintrags: Bibliographie
Titel: Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li₆La₃ZrTaO₁₂ Garnet
Sprache: Englisch
Publikationsjahr: 2018
Ort: Darmstadt
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of The Electrochemical Society
Jahrgang/Volume einer Zeitschrift: 165
(Heft-)Nummer: 16
DOI: 10.1149/2.1391814jes
Zugehörige Links:
Kurzbeschreibung (Abstract):

Solid electrolytes potentially enable rechargeable batteries with lithium metal anodes possessing higher energy densities than today's lithium ion batteries. To do so the solid electrolyte must suppress instabilities that lead to poor coulombic efficiency and short circuits. In this work, lithium electrodeposition was performed on single-crystal Li₆La₃ZrTaO₁₂ garnets to investigate factors governing lithium penetration through brittle electrolytes. In single crystals, grain boundaries are excluded as paths for lithium metal propagation. Vickers microindentation was used to introduce surface flaws of known size. However, operando optical microscopy revealed that lithium metal penetration propagates preferentially from a different, second class of flaws. At the perimeter of surface current collectors smaller in size than the lithium source electrode, an enhanced electrodeposition current density causes lithium filled cracks to initiate and grow to penetration, even when large Vickers defects are in proximity. Modeling the electric field distribution in the experimental cell revealed that a 5-fold enhancement in field occurs within 10 micrometers of the electrode edge and generates high local electrochemomechanical stress. This may determine the initiation sites for lithium propagation, overriding the presence of larger defects elsewhere.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 02 Aug 2024 12:49
Letzte Änderung: 02 Aug 2024 12:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen