Moneke, Benedikt ; Kinder, Jan Frederic ; Ernst, Oskar ; Halfmann, Thomas (2023)
Detection of HCl molecules by resonantly enhanced sum-frequency mixing of mid- and near-infrared laser pulses.
In: Physical Review A, 107
doi: https://link.aps.org/doi/10.1103/PhysRevA.107.012803
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We perform experimental studies of resonantly enhanced sum-frequency mixing (SFM), driven by tunable, spectrally narrowband mid-infrared and fixed-frequency nanosecond laser pulses, aiming at applications in molecular gas detection. The mid-infrared pulses are tuned in the vicinity of two-photon rovibrational transitions in the electronic ground state to provide strong resonance enhancements of the nonlinear susceptibility, while a probe laser at shorter wavelength uses an off-resonant single-photon coupling to excited electronic states. This SFM approach benefits from the advantageous combination of typically small detunings among the mid-infrared, vibrational transitions and the typically large transition dipole moment for couplings of electronic states. Moreover, compared to resonantly enhanced third harmonic generation (THG), a signal wave at much shorter wavelength permits simple and efficient detection. We demonstrate resonantly enhanced SFM via rovibrational states in gaseous hydrogen chloride molecules and compare its features to THG. The SFM spectra offer a large signal-to-noise ratio of 4 orders of magnitude and a detection limit down to a pressure of 0.1 mbar, corresponding to a particle density of 0.35×10^15 per cm^3.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Moneke, Benedikt ; Kinder, Jan Frederic ; Ernst, Oskar ; Halfmann, Thomas |
Art des Eintrags: | Bibliographie |
Titel: | Detection of HCl molecules by resonantly enhanced sum-frequency mixing of mid- and near-infrared laser pulses |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Ort: | Darmstadt |
Verlag: | American Physical Society |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Physical Review A |
Jahrgang/Volume einer Zeitschrift: | 107 |
Kollation: | 8 Seiten |
DOI: | https://link.aps.org/doi/10.1103/PhysRevA.107.012803 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We perform experimental studies of resonantly enhanced sum-frequency mixing (SFM), driven by tunable, spectrally narrowband mid-infrared and fixed-frequency nanosecond laser pulses, aiming at applications in molecular gas detection. The mid-infrared pulses are tuned in the vicinity of two-photon rovibrational transitions in the electronic ground state to provide strong resonance enhancements of the nonlinear susceptibility, while a probe laser at shorter wavelength uses an off-resonant single-photon coupling to excited electronic states. This SFM approach benefits from the advantageous combination of typically small detunings among the mid-infrared, vibrational transitions and the typically large transition dipole moment for couplings of electronic states. Moreover, compared to resonantly enhanced third harmonic generation (THG), a signal wave at much shorter wavelength permits simple and efficient detection. We demonstrate resonantly enhanced SFM via rovibrational states in gaseous hydrogen chloride molecules and compare its features to THG. The SFM spectra offer a large signal-to-noise ratio of 4 orders of magnitude and a detection limit down to a pressure of 0.1 mbar, corresponding to a particle density of 0.35×10^15 per cm^3. |
Freie Schlagworte: | molecular spectra, nonlinear optical susceptibility, third order nonlinear oplticas processes, four-wave mixing, optical spectroscopy |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Angewandte Physik 05 Fachbereich Physik > Institut für Angewandte Physik > Nichtlineare Optik und Quantenoptik |
Hinterlegungsdatum: | 02 Aug 2024 12:47 |
Letzte Änderung: | 02 Aug 2024 12:47 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Detection of HCl molecules by resonantly enhanced sum-frequency mixing of mid- and near-infrared laser pulses. (deposited 16 Jan 2023 14:22)
- Detection of HCl molecules by resonantly enhanced sum-frequency mixing of mid- and near-infrared laser pulses. (deposited 02 Aug 2024 12:47) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |