Nitzsche, Kai Nils ; Verch, Gernot ; Premke, Katrin ; Gessler, Arthur ; Kayler, Zachary E. (2016)
Visualizing land‐use and management complexity within biogeochemical cycles of an agricultural landscape.
In: Ecosphere, 7 (5)
doi: 10.1002/ecs2.1282
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Crop fields are cultivated across continuities of soil, topography, and local climate that drive biological processes and nutrient cycling at the landscape scale; yet land management and agricultural research are often performed at the field scale, potentially neglecting the context of the surrounding landscape. Adding to this complexity is the overlap of ecosystems and their biogeochemical legacies, as a patchwork of crops fields, natural grasslands, and forests develops across the landscape. Furthermore, as new technologies and policies are introduced, management practices change, including fertilization strategies, which further alter biological productivity and nutrient cycling. All of these environmental, biological, and historical legacies are potentially recorded in the isotopic signal of plant, soil, and sediment organic matter across the landscape. We mapped over 1500 plant, soil, and sediment isotopic values and generated an isotopic landscape (isoscape) over a 40-km² agricultural site in NE Germany. We observed distinct patterns in the isotopic composition of organic matter sampled from the landscape that clearly reflect the landscape complexity. C₃ crop intrinsic water-use efficiency reflected a precipitation gradient, while native forest and grassland plant species did not, suggesting that native plants are more adapted to predominant climatic conditions. δ¹³Csoil patterns reflected both the long-term input of plant organic matter, which was affected by the local climate conditions, and the repeated cultivation of corn. Soil organic matter ¹⁵N isotopic values also revealed spatial differences in fertilization regimes. Forest fragments, in which the nitrogen cycle was relatively open, were more water-use efficient. Sediments from small water bodies received substantial inputs from surrounding field vegetation but were also affected by seasonal drying. These isotopic maps can be used to visualize large spatial heterogeneity and complexity, and they are a powerful means to interpret past and current trends in agricultural landscapes.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2016 |
Autor(en): | Nitzsche, Kai Nils ; Verch, Gernot ; Premke, Katrin ; Gessler, Arthur ; Kayler, Zachary E. |
Art des Eintrags: | Bibliographie |
Titel: | Visualizing land‐use and management complexity within biogeochemical cycles of an agricultural landscape |
Sprache: | Englisch |
Publikationsjahr: | 2016 |
Ort: | Darmstadt |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Ecosphere |
Jahrgang/Volume einer Zeitschrift: | 7 |
(Heft-)Nummer: | 5 |
Kollation: | 16 Seiten |
DOI: | 10.1002/ecs2.1282 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Crop fields are cultivated across continuities of soil, topography, and local climate that drive biological processes and nutrient cycling at the landscape scale; yet land management and agricultural research are often performed at the field scale, potentially neglecting the context of the surrounding landscape. Adding to this complexity is the overlap of ecosystems and their biogeochemical legacies, as a patchwork of crops fields, natural grasslands, and forests develops across the landscape. Furthermore, as new technologies and policies are introduced, management practices change, including fertilization strategies, which further alter biological productivity and nutrient cycling. All of these environmental, biological, and historical legacies are potentially recorded in the isotopic signal of plant, soil, and sediment organic matter across the landscape. We mapped over 1500 plant, soil, and sediment isotopic values and generated an isotopic landscape (isoscape) over a 40-km² agricultural site in NE Germany. We observed distinct patterns in the isotopic composition of organic matter sampled from the landscape that clearly reflect the landscape complexity. C₃ crop intrinsic water-use efficiency reflected a precipitation gradient, while native forest and grassland plant species did not, suggesting that native plants are more adapted to predominant climatic conditions. δ¹³Csoil patterns reflected both the long-term input of plant organic matter, which was affected by the local climate conditions, and the repeated cultivation of corn. Soil organic matter ¹⁵N isotopic values also revealed spatial differences in fertilization regimes. Forest fragments, in which the nitrogen cycle was relatively open, were more water-use efficient. Sediments from small water bodies received substantial inputs from surrounding field vegetation but were also affected by seasonal drying. These isotopic maps can be used to visualize large spatial heterogeneity and complexity, and they are a powerful means to interpret past and current trends in agricultural landscapes. |
Freie Schlagworte: | agricultural landscape; isoscape; land management; land-use change and impacts; spatial visualization; stable isotopes |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Bodenmineralogie und Bodenchemie |
Hinterlegungsdatum: | 02 Aug 2024 12:46 |
Letzte Änderung: | 02 Aug 2024 12:46 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Visualizing land‐use and management complexity within biogeochemical cycles of an agricultural landscape. (deposited 13 Dez 2022 12:36)
- Visualizing land‐use and management complexity within biogeochemical cycles of an agricultural landscape. (deposited 02 Aug 2024 12:46) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |