Jin, Ou ; Shang, Yuanyuan ; Huang, Xiaohui ; Szabó, Dorothée Vinga ; Le, Thi Thu ; Wagner, Stefan ; Klassen, Thomas ; Kübel, Christian ; Pistidda, Claudio ; Pundt, Astrid (2022)
Transformation Kinetics of LiBH₄–MgH₂ for Hydrogen Storage.
In: Molecules, 27 (20)
doi: 10.3390/molecules27207005
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
The reactive hydride composite (RHC) LiBH₄–MgH₂ is regarded as one of the most promising materials for hydrogen storage. Its extensive application is so far limited by its poor dehydrogenation kinetics, due to the hampered nucleation and growth process of MgB₂. Nevertheless, the poor kinetics can be improved by additives. This work studied the growth process of MgB₂ with varying contents of 3TiCl₃·AlCl₃ as an additive, and combined kinetic measurements, X-ray diffraction (XRD), and advanced transmission electron microscopy (TEM) to develop a structural understanding. It was found that the formation of MgB₂ preferentially occurs on TiB₂ nanoparticles. The major reason for this is that the elastic strain energy density can be reduced to ~4.7 × 10⁷ J/m³ by creating an interface between MgB₂ and TiB₂, as opposed to ~2.9 × 10⁸ J/m³ at the original interface between MgB₂ and Mg. The kinetics of the MgB₂ growth was modeled by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation, describing the kinetics better than other kinetic models. It is suggested that the MgB₂ growth rate-controlling step is changed from interface- to diffusion-controlled when the nucleation center changes from Mg to TiB₂. This transition is also reflected in the change of the MgB₂ morphology from bar- to platelet-like. Based on our observations, we suggest that an additive content between 2.5 and 5 mol% 3TiCl₃·AlCl₃ results in the best enhancement of the dehydrogenation kinetics.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Jin, Ou ; Shang, Yuanyuan ; Huang, Xiaohui ; Szabó, Dorothée Vinga ; Le, Thi Thu ; Wagner, Stefan ; Klassen, Thomas ; Kübel, Christian ; Pistidda, Claudio ; Pundt, Astrid |
Art des Eintrags: | Bibliographie |
Titel: | Transformation Kinetics of LiBH₄–MgH₂ for Hydrogen Storage |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Molecules |
Jahrgang/Volume einer Zeitschrift: | 27 |
(Heft-)Nummer: | 20 |
Kollation: | 15 Seiten |
DOI: | 10.3390/molecules27207005 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | The reactive hydride composite (RHC) LiBH₄–MgH₂ is regarded as one of the most promising materials for hydrogen storage. Its extensive application is so far limited by its poor dehydrogenation kinetics, due to the hampered nucleation and growth process of MgB₂. Nevertheless, the poor kinetics can be improved by additives. This work studied the growth process of MgB₂ with varying contents of 3TiCl₃·AlCl₃ as an additive, and combined kinetic measurements, X-ray diffraction (XRD), and advanced transmission electron microscopy (TEM) to develop a structural understanding. It was found that the formation of MgB₂ preferentially occurs on TiB₂ nanoparticles. The major reason for this is that the elastic strain energy density can be reduced to ~4.7 × 10⁷ J/m³ by creating an interface between MgB₂ and TiB₂, as opposed to ~2.9 × 10⁸ J/m³ at the original interface between MgB₂ and Mg. The kinetics of the MgB₂ growth was modeled by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation, describing the kinetics better than other kinetic models. It is suggested that the MgB₂ growth rate-controlling step is changed from interface- to diffusion-controlled when the nucleation center changes from Mg to TiB₂. This transition is also reflected in the change of the MgB₂ morphology from bar- to platelet-like. Based on our observations, we suggest that an additive content between 2.5 and 5 mol% 3TiCl₃·AlCl₃ results in the best enhancement of the dehydrogenation kinetics. |
Freie Schlagworte: | hydrogen storage, transmission electron microscopy, crystallography, reactive hydride composite, additive, phase transformation |
Zusätzliche Informationen: | This article belongs to the Special Issue Advances in Hydrogen Storage Materials for Energy Utilization 2.0 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 540 Chemie 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien |
Hinterlegungsdatum: | 02 Aug 2024 12:44 |
Letzte Änderung: | 02 Aug 2024 12:44 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Transformation Kinetics of LiBH₄–MgH₂ for Hydrogen Storage. (deposited 07 Nov 2022 12:12)
- Transformation Kinetics of LiBH₄–MgH₂ for Hydrogen Storage. (deposited 02 Aug 2024 12:44) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |