TU Darmstadt / ULB / TUbiblio

Maximum Incorporation of Soft Microgel at Interfaces of Water in Oil Emulsion Droplets Stabilized by Solid Silica Spheres

Stock, Sebastian ; Röhl, Susanne ; Mirau, Luca ; Kraume, Matthias ; Klitzing, Regine von (2022)
Maximum Incorporation of Soft Microgel at Interfaces of Water in Oil Emulsion Droplets Stabilized by Solid Silica Spheres.
In: Nanomaterials, 12 (15)
doi: 10.3390/nano12152649
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The incorporation of soft hydrophilic particles at the interface of water in non-polar oil emulsion droplets is crucial for several applications. However, the stabilization of water in non-polar oil emulsions with hydrophilic soft material alone is, besides certain exceptions, not possible. In our previous works, we showed that stabilizing the emulsions with well-characterized spherical hydrophobic silica nanospheres (SNs) and soft equally charged microgel particles (MGs) is a robust strategy to stabilize w/o emulsions while still incorporating a large amount of MGs at the interface. In the present study, we address the question of what the maximum amount of MGs at the interface in these kinds of emulsion droplets can be. By using well-characterized mono-disperse SNs, we are able to calculate the fraction of interface covered by the SNs and complementary that of the present MG. We found that it is not possible to decrease the SN coverage below 56% irrespective of MG softness and SN size. The findings elucidate new perspectives to the broader topic of soft/solid stabilized emulsions.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Stock, Sebastian ; Röhl, Susanne ; Mirau, Luca ; Kraume, Matthias ; Klitzing, Regine von
Art des Eintrags: Bibliographie
Titel: Maximum Incorporation of Soft Microgel at Interfaces of Water in Oil Emulsion Droplets Stabilized by Solid Silica Spheres
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanomaterials
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 15
Kollation: 15 Seiten
DOI: 10.3390/nano12152649
Zugehörige Links:
Kurzbeschreibung (Abstract):

The incorporation of soft hydrophilic particles at the interface of water in non-polar oil emulsion droplets is crucial for several applications. However, the stabilization of water in non-polar oil emulsions with hydrophilic soft material alone is, besides certain exceptions, not possible. In our previous works, we showed that stabilizing the emulsions with well-characterized spherical hydrophobic silica nanospheres (SNs) and soft equally charged microgel particles (MGs) is a robust strategy to stabilize w/o emulsions while still incorporating a large amount of MGs at the interface. In the present study, we address the question of what the maximum amount of MGs at the interface in these kinds of emulsion droplets can be. By using well-characterized mono-disperse SNs, we are able to calculate the fraction of interface covered by the SNs and complementary that of the present MG. We found that it is not possible to decrease the SN coverage below 56% irrespective of MG softness and SN size. The findings elucidate new perspectives to the broader topic of soft/solid stabilized emulsions.

Freie Schlagworte: microgels, pickering emulsions, simultaneous stabilization, coverage parameter
Zusätzliche Informationen:

This article belongs to the Special Issue Nano- and Micro-Particles Interacting with Soft Interfaces

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
Hinterlegungsdatum: 02 Aug 2024 12:43
Letzte Änderung: 02 Aug 2024 12:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen