Gutiérrez-Jorquera, Juan ; Kummer, Florian (2022)
A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework.
In: International Journal for Numerical Methods in Fluids, 94 (4)
doi: 10.1002/fld.5056
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We present a fully coupled solver based on the discontinuous Galerkin method for steady‐state diffusion flames using the low‐Mach approximation of the governing equations with a one‐step kinetic model. The nonlinear equation system is solved with a Newton–Dogleg method and initial estimates for flame calculations are obtained from a flame‐sheet model. Details on the spatial discretization and the nonlinear solver are presented. The method is tested with reactive and nonreactive benchmark cases. Convergence studies are presented, and we show that the expected convergence rates are obtained. The solver for the low‐Mach equations is used for calculating a differentially heated cavity configuration, which is validated against benchmark solutions. Additionally, a two‐dimensional counter diffusion flame is calculated, and the results are compared with the self‐similar one dimensional solution of said configuration.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Gutiérrez-Jorquera, Juan ; Kummer, Florian |
Art des Eintrags: | Bibliographie |
Titel: | A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Verlag: | John Wiley & Sons |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal for Numerical Methods in Fluids |
Jahrgang/Volume einer Zeitschrift: | 94 |
(Heft-)Nummer: | 4 |
DOI: | 10.1002/fld.5056 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We present a fully coupled solver based on the discontinuous Galerkin method for steady‐state diffusion flames using the low‐Mach approximation of the governing equations with a one‐step kinetic model. The nonlinear equation system is solved with a Newton–Dogleg method and initial estimates for flame calculations are obtained from a flame‐sheet model. Details on the spatial discretization and the nonlinear solver are presented. The method is tested with reactive and nonreactive benchmark cases. Convergence studies are presented, and we show that the expected convergence rates are obtained. The solver for the low‐Mach equations is used for calculating a differentially heated cavity configuration, which is validated against benchmark solutions. Additionally, a two‐dimensional counter diffusion flame is calculated, and the results are compared with the self‐similar one dimensional solution of said configuration. |
Freie Schlagworte: | diffusion flames, discontinuous Galerkin, high‐order methods, low‐Mach equations, Newton method |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) |
Hinterlegungsdatum: | 02 Aug 2024 12:41 |
Letzte Änderung: | 02 Aug 2024 12:41 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework. (deposited 24 Jun 2022 12:57)
- A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework. (deposited 02 Aug 2024 12:41) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |