TU Darmstadt / ULB / TUbiblio

A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework

Gutiérrez-Jorquera, Juan ; Kummer, Florian (2022)
A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework.
In: International Journal for Numerical Methods in Fluids, 94 (4)
doi: 10.1002/fld.5056
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We present a fully coupled solver based on the discontinuous Galerkin method for steady‐state diffusion flames using the low‐Mach approximation of the governing equations with a one‐step kinetic model. The nonlinear equation system is solved with a Newton–Dogleg method and initial estimates for flame calculations are obtained from a flame‐sheet model. Details on the spatial discretization and the nonlinear solver are presented. The method is tested with reactive and nonreactive benchmark cases. Convergence studies are presented, and we show that the expected convergence rates are obtained. The solver for the low‐Mach equations is used for calculating a differentially heated cavity configuration, which is validated against benchmark solutions. Additionally, a two‐dimensional counter diffusion flame is calculated, and the results are compared with the self‐similar one dimensional solution of said configuration.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Gutiérrez-Jorquera, Juan ; Kummer, Florian
Art des Eintrags: Bibliographie
Titel: A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Verlag: John Wiley & Sons
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal for Numerical Methods in Fluids
Jahrgang/Volume einer Zeitschrift: 94
(Heft-)Nummer: 4
DOI: 10.1002/fld.5056
Zugehörige Links:
Kurzbeschreibung (Abstract):

We present a fully coupled solver based on the discontinuous Galerkin method for steady‐state diffusion flames using the low‐Mach approximation of the governing equations with a one‐step kinetic model. The nonlinear equation system is solved with a Newton–Dogleg method and initial estimates for flame calculations are obtained from a flame‐sheet model. Details on the spatial discretization and the nonlinear solver are presented. The method is tested with reactive and nonreactive benchmark cases. Convergence studies are presented, and we show that the expected convergence rates are obtained. The solver for the low‐Mach equations is used for calculating a differentially heated cavity configuration, which is validated against benchmark solutions. Additionally, a two‐dimensional counter diffusion flame is calculated, and the results are compared with the self‐similar one dimensional solution of said configuration.

Freie Schlagworte: diffusion flames, discontinuous Galerkin, high‐order methods, low‐Mach equations, Newton method
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy)
Hinterlegungsdatum: 02 Aug 2024 12:41
Letzte Änderung: 02 Aug 2024 12:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen