Judran, Hadia Kadhim ; Al-Hasnawi, Adnan G. Tuaamah ; Al Zubaidi, Faten N. ; Al-Maliki, Wisam Abed Kattea ; Alobaid, Falah ; Epple, Bernd (2022)
A High Thermal Conductivity of MgO-H₂O Nanofluid Prepared by Two-Step Technique.
In: Applied Sciences, 12 (5)
doi: 10.3390/app12052655
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
In this paper, the main goal is to study the impact of nanopowder volume concentration and ultrasonication treatment time on the stability and thermophysical properties of MgO-DW nanofluid at room temperature. The co-precipitation method was utilized to prepare pure MgO nanoparticles with an average particle size of 33 nm. The prepared MgO nanopowder was characterized by using XRD, SEM, and EDX analyses. Then, MgO-DW nanofluid was obtained with different volume concentrations (i.e., 0.05, 0.1, 0.15, 0.2, and 0.25 vol.%) and different ultrasonication time periods (i.e., 45, 90, 135, and 180 min) by using a novel two-step technique. With volume concentration and ultrasonication time of 0.15 vol.% and 180 min, respectively, good stability was achieved, according to the zeta potential analysis. With increasing volume concentration and ultrasonication time period of the nanofluid samples, the thermal conductivity measurements showed significant increases. As a result, the maximum enhancement was found to be 25.08% at a concentration ratio of 0.25 vol.% and agitation time of 180 min. Dynamic viscosity measurements revealed two contrasting trends with volume concentration and ultrasonication time. The lowest value of relative viscosity was gained by 0.05 vol.% MgO-DW nanofluid. The chemical and physical interactions between MgO nanoparticles and DW molecules play an important function in determining the thermal conductivity and dynamic viscosity of MgO-DW nanofluid. These findings exhibit that MgO-DW nanofluid has the potential to be used as an advanced heat transfer fluid in cooling systems and heat exchangers.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Judran, Hadia Kadhim ; Al-Hasnawi, Adnan G. Tuaamah ; Al Zubaidi, Faten N. ; Al-Maliki, Wisam Abed Kattea ; Alobaid, Falah ; Epple, Bernd |
Art des Eintrags: | Bibliographie |
Titel: | A High Thermal Conductivity of MgO-H₂O Nanofluid Prepared by Two-Step Technique |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applied Sciences |
Jahrgang/Volume einer Zeitschrift: | 12 |
(Heft-)Nummer: | 5 |
Kollation: | 18 Seiten |
DOI: | 10.3390/app12052655 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | In this paper, the main goal is to study the impact of nanopowder volume concentration and ultrasonication treatment time on the stability and thermophysical properties of MgO-DW nanofluid at room temperature. The co-precipitation method was utilized to prepare pure MgO nanoparticles with an average particle size of 33 nm. The prepared MgO nanopowder was characterized by using XRD, SEM, and EDX analyses. Then, MgO-DW nanofluid was obtained with different volume concentrations (i.e., 0.05, 0.1, 0.15, 0.2, and 0.25 vol.%) and different ultrasonication time periods (i.e., 45, 90, 135, and 180 min) by using a novel two-step technique. With volume concentration and ultrasonication time of 0.15 vol.% and 180 min, respectively, good stability was achieved, according to the zeta potential analysis. With increasing volume concentration and ultrasonication time period of the nanofluid samples, the thermal conductivity measurements showed significant increases. As a result, the maximum enhancement was found to be 25.08% at a concentration ratio of 0.25 vol.% and agitation time of 180 min. Dynamic viscosity measurements revealed two contrasting trends with volume concentration and ultrasonication time. The lowest value of relative viscosity was gained by 0.05 vol.% MgO-DW nanofluid. The chemical and physical interactions between MgO nanoparticles and DW molecules play an important function in determining the thermal conductivity and dynamic viscosity of MgO-DW nanofluid. These findings exhibit that MgO-DW nanofluid has the potential to be used as an advanced heat transfer fluid in cooling systems and heat exchangers. |
Freie Schlagworte: | MgO-DW nanofluid, two-step technique, co-precipitation, XRD and SEM, thermal conductivity, dynamic viscosity |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Energiesysteme und Energietechnik (EST) |
Hinterlegungsdatum: | 02 Aug 2024 12:39 |
Letzte Änderung: | 02 Aug 2024 12:39 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
A High Thermal Conductivity of MgO-H₂O Nanofluid Prepared by Two-Step Technique. (deposited 08 Apr 2022 11:19)
- A High Thermal Conductivity of MgO-H₂O Nanofluid Prepared by Two-Step Technique. (deposited 02 Aug 2024 12:39) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |