TU Darmstadt / ULB / TUbiblio

Biological Cardiac Tissue Effects of High-Energy Heavy Ions – Investigation for Myocardial Ablation

Rapp, Felicitas ; Simoniello, Palma ; Wiedemann, Julia ; Bahrami, Karola ; Grünebaum, Valeria ; Ktitareva, Svetlana ; Durante, Marco ; Lugenbiel, Patrick ; Thomas, Dierk ; Lehmann, Helge Immo ; Packer, Douglas L. ; Graeff, Christian ; Fournier, Claudia (2019)
Biological Cardiac Tissue Effects of High-Energy Heavy Ions – Investigation for Myocardial Ablation.
In: Scientific Reports, 9
doi: 10.1038/s41598-019-41314-x
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Noninvasive X-ray stereotactic treatment is considered a promising alternative to catheter ablation in patients affected by severe heart arrhythmia. High-energy heavy ions can deliver high radiation doses in small targets with reduced damage to the normal tissue compared to conventional X-rays. For this reason, charged particle therapy, widely used in oncology, can be a powerful tool for radiosurgery in cardiac diseases. We have recently performed a feasibility study in a swine model using high doses of high-energy C-ions to target specific cardiac structures. Interruption of cardiac conduction was observed in some animals. Here we report the biological effects measured in the pig heart tissue of the same animals six months after the treatment. Immunohistological analysis of the target tissue showed (1.) long-lasting vascular damage, i.e. persistent hemorrhage, loss of microvessels, and occurrence of siderophages, (2.) fibrosis and (3.) loss of polarity of targeted cardiomyocytes and wavy fibers with vacuolization. We conclude that the observed physiological changes in heart function are produced by radiation-induced fibrosis and cardiomyocyte functional inactivation. No effects were observed in the normal tissue traversed by the particle beam, suggesting that charged particles have the potential to produce ablation of specific heart targets with minimal side effects.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Rapp, Felicitas ; Simoniello, Palma ; Wiedemann, Julia ; Bahrami, Karola ; Grünebaum, Valeria ; Ktitareva, Svetlana ; Durante, Marco ; Lugenbiel, Patrick ; Thomas, Dierk ; Lehmann, Helge Immo ; Packer, Douglas L. ; Graeff, Christian ; Fournier, Claudia
Art des Eintrags: Bibliographie
Titel: Biological Cardiac Tissue Effects of High-Energy Heavy Ions – Investigation for Myocardial Ablation
Sprache: Englisch
Publikationsjahr: 2019
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 9
Kollation: 13 Seiten
DOI: 10.1038/s41598-019-41314-x
Zugehörige Links:
Kurzbeschreibung (Abstract):

Noninvasive X-ray stereotactic treatment is considered a promising alternative to catheter ablation in patients affected by severe heart arrhythmia. High-energy heavy ions can deliver high radiation doses in small targets with reduced damage to the normal tissue compared to conventional X-rays. For this reason, charged particle therapy, widely used in oncology, can be a powerful tool for radiosurgery in cardiac diseases. We have recently performed a feasibility study in a swine model using high doses of high-energy C-ions to target specific cardiac structures. Interruption of cardiac conduction was observed in some animals. Here we report the biological effects measured in the pig heart tissue of the same animals six months after the treatment. Immunohistological analysis of the target tissue showed (1.) long-lasting vascular damage, i.e. persistent hemorrhage, loss of microvessels, and occurrence of siderophages, (2.) fibrosis and (3.) loss of polarity of targeted cardiomyocytes and wavy fibers with vacuolization. We conclude that the observed physiological changes in heart function are produced by radiation-induced fibrosis and cardiomyocyte functional inactivation. No effects were observed in the normal tissue traversed by the particle beam, suggesting that charged particles have the potential to produce ablation of specific heart targets with minimal side effects.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Biophysik
Hinterlegungsdatum: 02 Aug 2024 12:38
Letzte Änderung: 02 Aug 2024 12:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen