TU Darmstadt / ULB / TUbiblio

Morphology of three-body quantum states from machine learning

Huber, David ; Marchukov, Oleksandr V. ; Hammer, Hans-Werner ; Volosniev, Artem G. (2021)
Morphology of three-body quantum states from machine learning.
In: New Journal of Physics, 23 (6)
doi: 10.1088/1367-2630/ac0576
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the main text as chaotic). To set the stage, we first investigate the energy level distributions of the billiards as a function of 1/κ ∈ [0, 1] and find no evidence of integrable cases beyond the limiting values 1/κ = 1 and 1/κ = 0. Then, we use machine learning tools to analyze properties of probability distributions of individual quantum states. We find that convolutional neural networks can correctly classify integrable and non-integrable states. The decisive features of thewave functions are the normalization and a large number of zero elements, corresponding to the existence of a nodal line. The network achieves typical accuracies of 97%, suggesting that machine learning tools can be used to analyze and classify the morphology of probability densities obtained in theory or experiment.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Huber, David ; Marchukov, Oleksandr V. ; Hammer, Hans-Werner ; Volosniev, Artem G.
Art des Eintrags: Bibliographie
Titel: Morphology of three-body quantum states from machine learning
Sprache: Englisch
Publikationsjahr: 2021
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: New Journal of Physics
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 6
Kollation: 20 Seiten
DOI: 10.1088/1367-2630/ac0576
Zugehörige Links:
Kurzbeschreibung (Abstract):

The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the main text as chaotic). To set the stage, we first investigate the energy level distributions of the billiards as a function of 1/κ ∈ [0, 1] and find no evidence of integrable cases beyond the limiting values 1/κ = 1 and 1/κ = 0. Then, we use machine learning tools to analyze properties of probability distributions of individual quantum states. We find that convolutional neural networks can correctly classify integrable and non-integrable states. The decisive features of thewave functions are the normalization and a large number of zero elements, corresponding to the existence of a nodal line. The network achieves typical accuracies of 97%, suggesting that machine learning tools can be used to analyze and classify the morphology of probability densities obtained in theory or experiment.

Zusätzliche Informationen:

Keywords: quantum billiards, machine learning, impurity systems, quantum chaos

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Kernphysik
Hinterlegungsdatum: 02 Aug 2024 12:36
Letzte Änderung: 02 Aug 2024 12:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen