TU Darmstadt / ULB / TUbiblio

Nanoskaliger hybrider amorph/graphitischer Kohlenstoff als Schlüssel zur nächsten Generation von kohlenstoffbasierten Katalysatoren für oxidative Dehydrierungen

Herold, Felix ; Prosch, Stefan ; Oefner, Niklas ; Brunnengräber, Kai ; Leubner, Oliver ; Hermans, Yannick ; Hofmann, Kathrin ; Drochner, Alfons ; Hofmann, Jan P. ; Qi, Wei ; Etzold, Bastian J. M. (2021)
Nanoskaliger hybrider amorph/graphitischer Kohlenstoff als Schlüssel zur nächsten Generation von kohlenstoffbasierten Katalysatoren für oxidative Dehydrierungen.
In: Angewandte Chemie, 133 (11)
doi: 10.1002/ange.202014862
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Eine neue Synthesestrategie liefert “Nicht-nano”-Kohlenstoffmaterialien als Dehydrierungskatalysatoren, die eine ähnliche katalytische Leistung wie Nanokohlenstoffe aufweisen. Schlüsselelement sind hierbei Kohlenstoffpräkursoren auf Polymerbasis, die eine Soft-Templat-Strategie mit Ionenadsorption und katalytischer Graphitisierung kombinieren, um eine Kontrolle der makroskopischen Form, Textur und Kristallinität zu ermöglichen und nach der Pyrolyse einen hybriden amorph/graphitischen Kohlenstoff zu erhalten. Aus diesem Zwischenprodukt wird der aktive Kohlenstoffkatalysator hergestellt, indem die amorphen Anteile des Hybridkohlenstoffs durch selektive Oxidation entfernt werden. Die oxidative Dehydrierung von Ethanol wurde als Testreaktion gewählt. Die neuen Kohlenstoffkatalysatoren zeigen eine vergleichbar hohe Selektivität (82 %) wie ein Benchmark mit Kohlenstoffnanoröhren, jedoch mit 10-mal höheren Raum-Zeit-Ausbeuten bei 330 °C. Diese neuartigen Kohlenstoffmaterialien sind über einen technisch skalierbaren, reproduzierbaren Syntheseweg zugänglich und weisen kugelförmige Partikel mit Durchmessern um 100 μm auf, was eine unproblematische Handhabung ermöglicht.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Herold, Felix ; Prosch, Stefan ; Oefner, Niklas ; Brunnengräber, Kai ; Leubner, Oliver ; Hermans, Yannick ; Hofmann, Kathrin ; Drochner, Alfons ; Hofmann, Jan P. ; Qi, Wei ; Etzold, Bastian J. M.
Art des Eintrags: Bibliographie
Titel: Nanoskaliger hybrider amorph/graphitischer Kohlenstoff als Schlüssel zur nächsten Generation von kohlenstoffbasierten Katalysatoren für oxidative Dehydrierungen
Sprache: Deutsch
Publikationsjahr: 2021
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Angewandte Chemie
Jahrgang/Volume einer Zeitschrift: 133
(Heft-)Nummer: 11
DOI: 10.1002/ange.202014862
Zugehörige Links:
Kurzbeschreibung (Abstract):

Eine neue Synthesestrategie liefert “Nicht-nano”-Kohlenstoffmaterialien als Dehydrierungskatalysatoren, die eine ähnliche katalytische Leistung wie Nanokohlenstoffe aufweisen. Schlüsselelement sind hierbei Kohlenstoffpräkursoren auf Polymerbasis, die eine Soft-Templat-Strategie mit Ionenadsorption und katalytischer Graphitisierung kombinieren, um eine Kontrolle der makroskopischen Form, Textur und Kristallinität zu ermöglichen und nach der Pyrolyse einen hybriden amorph/graphitischen Kohlenstoff zu erhalten. Aus diesem Zwischenprodukt wird der aktive Kohlenstoffkatalysator hergestellt, indem die amorphen Anteile des Hybridkohlenstoffs durch selektive Oxidation entfernt werden. Die oxidative Dehydrierung von Ethanol wurde als Testreaktion gewählt. Die neuen Kohlenstoffkatalysatoren zeigen eine vergleichbar hohe Selektivität (82 %) wie ein Benchmark mit Kohlenstoffnanoröhren, jedoch mit 10-mal höheren Raum-Zeit-Ausbeuten bei 330 °C. Diese neuartigen Kohlenstoffmaterialien sind über einen technisch skalierbaren, reproduzierbaren Syntheseweg zugänglich und weisen kugelförmige Partikel mit Durchmessern um 100 μm auf, was eine unproblematische Handhabung ermöglicht.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 02 Aug 2024 12:36
Letzte Änderung: 02 Aug 2024 12:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen