TU Darmstadt / ULB / TUbiblio

Learning directed acyclic graphs from large-scale genomics data

Nikolay, Fabio ; Pesavento, Marius ; Kritikos, George ; Typas, Nassos (2017)
Learning directed acyclic graphs from large-scale genomics data.
In: EURASIP Journal on Bioinformatics and Systems Biology, 2017 (10)
doi: 10.1186/s13637-017-0063-3
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Nikolay, Fabio ; Pesavento, Marius ; Kritikos, George ; Typas, Nassos
Art des Eintrags: Bibliographie
Titel: Learning directed acyclic graphs from large-scale genomics data
Sprache: Englisch
Publikationsjahr: 2017
Verlag: Springer Open
Titel der Zeitschrift, Zeitung oder Schriftenreihe: EURASIP Journal on Bioinformatics and Systems Biology
Jahrgang/Volume einer Zeitschrift: 2017
(Heft-)Nummer: 10
DOI: 10.1186/s13637-017-0063-3
URL / URN: https://bsb-eurasipjournals.springeropen.com/track/pdf/10.11...
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
Hinterlegungsdatum: 02 Aug 2024 12:33
Letzte Änderung: 02 Aug 2024 12:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen