TU Darmstadt / ULB / TUbiblio

A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas

Conci, Mira ; Schneider, Jens (2017)
A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas.
In: Sustainability, 9 (5)
doi: 10.3390/su9050747
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Building energy renovation quotas are not currently beingmet due to unfavorable conditions such as complex building regulations, limited investment incentives, historical preservation priorities, and technical limitations. The traditional strategy has been to incrementally lower the energy consumption of the building stock, instead of raising the efficiency of the energy supply through a broader use of renewable sources. This strategy requires an integral redefinition of the approach to energy building renovations. The joint project SWIVT elaborates on a district redevelopment strategy that combines a reduction in the energy demand of existing buildings and their physical interconnection within a local micro-grid and heating network. The district is equipped with energy generation and distribution technologies as well as hybrid thermal and electrical energy storage systems, steered by an optimizing energy management controller. This strategy is explored through three scenarios designed for an existing residential area in Darmstadt, Germany, and benchmarked against measured data. Presented findings show that a total primary energy balance at least 30% lower than that of a standard building renovation can be achieved by a cluster of buildings with different thermal qualities and connected energy generation, conversion, and storage systems, with only minimal physical intervention to existing buildings.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Conci, Mira ; Schneider, Jens
Art des Eintrags: Bibliographie
Titel: A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas
Sprache: Englisch
Publikationsjahr: 2017
Ort: Darmstadt
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sustainability
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 5
DOI: 10.3390/su9050747
Zugehörige Links:
Kurzbeschreibung (Abstract):

Building energy renovation quotas are not currently beingmet due to unfavorable conditions such as complex building regulations, limited investment incentives, historical preservation priorities, and technical limitations. The traditional strategy has been to incrementally lower the energy consumption of the building stock, instead of raising the efficiency of the energy supply through a broader use of renewable sources. This strategy requires an integral redefinition of the approach to energy building renovations. The joint project SWIVT elaborates on a district redevelopment strategy that combines a reduction in the energy demand of existing buildings and their physical interconnection within a local micro-grid and heating network. The district is equipped with energy generation and distribution technologies as well as hybrid thermal and electrical energy storage systems, steered by an optimizing energy management controller. This strategy is explored through three scenarios designed for an existing residential area in Darmstadt, Germany, and benchmarked against measured data. Presented findings show that a total primary energy balance at least 30% lower than that of a standard building renovation can be achieved by a cluster of buildings with different thermal qualities and connected energy generation, conversion, and storage systems, with only minimal physical intervention to existing buildings.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 690 Hausbau, Bauhandwerk
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion
Hinterlegungsdatum: 02 Aug 2024 12:32
Letzte Änderung: 02 Aug 2024 12:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen