TU Darmstadt / ULB / TUbiblio

Optimal baseline exploitation in vertical dark-matter detectors based on atom interferometry

Di Pumpo, Fabio ; Friedrich, Alexander ; Giese, Enno (2024)
Optimal baseline exploitation in vertical dark-matter detectors based on atom interferometry.
In: AVS Quantum Science, 6
doi: 10.1116/5.0175683
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction. These upcoming vertical sensors are inherently subject to gravity and thus feature gradiometer or multi-gradiometer configurations using single-photon transitions for large momentum transfer. While there has been significant progress on optimizing these experiments against detrimental noise sources and for deployment at their projected sites, finding optimal configurations that make the best use of the available resources is still an open issue. Even more, the fundamental limit of the device’s sensitivity is still missing. Here, we fill this gap and show that (a) resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline; (b) this limit is independent of the dark matter oscillation frequency; and (c) doubling the baseline decreases the ultimate measurement uncertainty by approximately 65%. Moreover, we propose a multi-diamond scheme with less mirror pulses where the leading-order gravitational phase contribution is suppressed and compare it to established geometries and demonstrate that both configurations saturate the same fundamental limit.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Di Pumpo, Fabio ; Friedrich, Alexander ; Giese, Enno
Art des Eintrags: Bibliographie
Titel: Optimal baseline exploitation in vertical dark-matter detectors based on atom interferometry
Sprache: Englisch
Publikationsjahr: 12 Januar 2024
Verlag: AIP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: AVS Quantum Science
Jahrgang/Volume einer Zeitschrift: 6
Kollation: 9 Seiten
DOI: 10.1116/5.0175683
Zugehörige Links:
Kurzbeschreibung (Abstract):

Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction. These upcoming vertical sensors are inherently subject to gravity and thus feature gradiometer or multi-gradiometer configurations using single-photon transitions for large momentum transfer. While there has been significant progress on optimizing these experiments against detrimental noise sources and for deployment at their projected sites, finding optimal configurations that make the best use of the available resources is still an open issue. Even more, the fundamental limit of the device’s sensitivity is still missing. Here, we fill this gap and show that (a) resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline; (b) this limit is independent of the dark matter oscillation frequency; and (c) doubling the baseline decreases the ultimate measurement uncertainty by approximately 65%. Moreover, we propose a multi-diamond scheme with less mirror pulses where the leading-order gravitational phase contribution is suppressed and compare it to established geometries and demonstrate that both configurations saturate the same fundamental limit.

Freie Schlagworte: General relativity, Gravitational waves, Metrology, Dark matter, Interferometry, Beyond the Standard Model, Matter waves, Quantum physicists
Zusätzliche Informationen:

Erstveröffentlichung

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenoptik
Hinterlegungsdatum: 02 Aug 2024 08:34
Letzte Änderung: 07 Nov 2024 12:50
PPN: 523299265
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen