Liu, Xiaowen ; Huai, Ying ; Guan, Hang ; Wiggenhauser, Matthias ; Caggìa, Veronica ; Schlaeppi, Klaus ; Mestrot, Adrien ; Bigalke, Moritz (2023)
Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake.
In: Science of the Total Environment, 875
doi: 10.1016/j.scitotenv.2023.162490
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Zinc (Zn) is an important micronutrient but can be toxic at elevated concentrations. We conducted an experiment to test the effect of plant growth and soil microbial disturbance on Zn in soil and plants. Pots were prepared with and without maize and in an undisturbed soil, a soil that was disturbed by X-ray sterilization and a soil that was sterilized but reconditioned with the original microbiome. The Zn concentration and isotope fractionation between the soil and the soil pore water increased with time, which is probably due to physical disturbance and fertilization. The presence of maize increased the Zn concentration and isotope fractionation in pore water. This was likely related to the uptake of light isotopes by plants and root exudates that solubilized heavy Zn from the soil. The sterilization disturbance increased the concentration of Zn in the pore water, because of abiotic and biotic changes. Despite a threefold increase in Zn concentration and changes in the Zn isotope composition in the pore water, the Zn content and isotope fractionation in the plant did not change. These results have implications for Zn mobility and uptake in crop plants and are relevant in terms of Zn nutrition.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Liu, Xiaowen ; Huai, Ying ; Guan, Hang ; Wiggenhauser, Matthias ; Caggìa, Veronica ; Schlaeppi, Klaus ; Mestrot, Adrien ; Bigalke, Moritz |
Art des Eintrags: | Bibliographie |
Titel: | Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Ort: | Amsterdam |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Science of the Total Environment |
Jahrgang/Volume einer Zeitschrift: | 875 |
Kollation: | 24 ungezählte Seiten |
DOI: | 10.1016/j.scitotenv.2023.162490 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Zinc (Zn) is an important micronutrient but can be toxic at elevated concentrations. We conducted an experiment to test the effect of plant growth and soil microbial disturbance on Zn in soil and plants. Pots were prepared with and without maize and in an undisturbed soil, a soil that was disturbed by X-ray sterilization and a soil that was sterilized but reconditioned with the original microbiome. The Zn concentration and isotope fractionation between the soil and the soil pore water increased with time, which is probably due to physical disturbance and fertilization. The presence of maize increased the Zn concentration and isotope fractionation in pore water. This was likely related to the uptake of light isotopes by plants and root exudates that solubilized heavy Zn from the soil. The sterilization disturbance increased the concentration of Zn in the pore water, because of abiotic and biotic changes. Despite a threefold increase in Zn concentration and changes in the Zn isotope composition in the pore water, the Zn content and isotope fractionation in the plant did not change. These results have implications for Zn mobility and uptake in crop plants and are relevant in terms of Zn nutrition. |
Freie Schlagworte: | Zinc isotopes, Trace metals, Soil biogeochemistry, Zinc deficiency, Soil pollution, Zinc nutrition |
ID-Nummer: | Artikel-ID: 162490 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Bodenmineralogie und Bodenchemie |
Hinterlegungsdatum: | 01 Aug 2024 09:42 |
Letzte Änderung: | 01 Aug 2024 10:38 |
PPN: | 520266994 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake. (deposited 31 Jul 2024 13:24)
- Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake. (deposited 01 Aug 2024 09:42) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |