TU Darmstadt / ULB / TUbiblio

In situ TEM investigation of conductive bridge RAM devices

Winkler, Robert ; Recalde-Benitez, Oscar ; Jiang, Tianshu ; Nasiou, Déspina ; Zintler, Alexander ; Alff, Lambert ; Molina-Luna, Leopoldo (2024)
In situ TEM investigation of conductive bridge RAM devices.
In: Microscopy and Microanalysis, 30 (Suppl 1.)
doi: 10.1093/mam/ozae044.528
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Conductive bridge random access memory (CBRAM) is a resistance-based non-volatile memory [1] with several advantages, such as high scalability, high on-off current with a wide dynamic range compared to oxide-based RAM (OxRAM) [2]. The unique electrochemical metallization mechanism (ECM) involved during device operation allows for lower power consumption and potentially faster switching speeds, making CBRAM more suitable for neuromorphic computing applications [3]. Investigating local processes via in situ transmission electron microscopy (TEM) would facilitate identifying how the device structure impacts performance and reliability; however, studies are scarce and mainly rely on visual changes [4]. In this study, we utilize low-loss electron energy loss spectroscopy (EELS) combined with TEM to fingerprint the dynamical processes in HfO2-based memristive devices via in situ heating and biasing.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Winkler, Robert ; Recalde-Benitez, Oscar ; Jiang, Tianshu ; Nasiou, Déspina ; Zintler, Alexander ; Alff, Lambert ; Molina-Luna, Leopoldo
Art des Eintrags: Bibliographie
Titel: In situ TEM investigation of conductive bridge RAM devices
Sprache: Englisch
Publikationsjahr: 24 Juli 2024
Verlag: Oxford University Press
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Microscopy and Microanalysis
Jahrgang/Volume einer Zeitschrift: 30
(Heft-)Nummer: Suppl 1.
DOI: 10.1093/mam/ozae044.528
Kurzbeschreibung (Abstract):

Conductive bridge random access memory (CBRAM) is a resistance-based non-volatile memory [1] with several advantages, such as high scalability, high on-off current with a wide dynamic range compared to oxide-based RAM (OxRAM) [2]. The unique electrochemical metallization mechanism (ECM) involved during device operation allows for lower power consumption and potentially faster switching speeds, making CBRAM more suitable for neuromorphic computing applications [3]. Investigating local processes via in situ transmission electron microscopy (TEM) would facilitate identifying how the device structure impacts performance and reliability; however, studies are scarce and mainly rely on visual changes [4]. In this study, we utilize low-loss electron energy loss spectroscopy (EELS) combined with TEM to fingerprint the dynamical processes in HfO2-based memristive devices via in situ heating and biasing.

Zusätzliche Informationen:

Physical Sciences Symposia: Electron Microscopy of Advanced Functional Materials

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
Hinterlegungsdatum: 31 Jul 2024 06:52
Letzte Änderung: 31 Jul 2024 06:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen