Winkler, Robert ; Recalde-Benitez, Oscar ; Jiang, Tianshu ; Nasiou, Déspina ; Zintler, Alexander ; Alff, Lambert ; Molina-Luna, Leopoldo (2024)
In situ TEM investigation of conductive bridge RAM devices.
In: Microscopy and Microanalysis, 30 (Suppl 1.)
doi: 10.1093/mam/ozae044.528
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Conductive bridge random access memory (CBRAM) is a resistance-based non-volatile memory [1] with several advantages, such as high scalability, high on-off current with a wide dynamic range compared to oxide-based RAM (OxRAM) [2]. The unique electrochemical metallization mechanism (ECM) involved during device operation allows for lower power consumption and potentially faster switching speeds, making CBRAM more suitable for neuromorphic computing applications [3]. Investigating local processes via in situ transmission electron microscopy (TEM) would facilitate identifying how the device structure impacts performance and reliability; however, studies are scarce and mainly rely on visual changes [4]. In this study, we utilize low-loss electron energy loss spectroscopy (EELS) combined with TEM to fingerprint the dynamical processes in HfO2-based memristive devices via in situ heating and biasing.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Winkler, Robert ; Recalde-Benitez, Oscar ; Jiang, Tianshu ; Nasiou, Déspina ; Zintler, Alexander ; Alff, Lambert ; Molina-Luna, Leopoldo |
Art des Eintrags: | Bibliographie |
Titel: | In situ TEM investigation of conductive bridge RAM devices |
Sprache: | Englisch |
Publikationsjahr: | 24 Juli 2024 |
Verlag: | Oxford University Press |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Microscopy and Microanalysis |
Jahrgang/Volume einer Zeitschrift: | 30 |
(Heft-)Nummer: | Suppl 1. |
DOI: | 10.1093/mam/ozae044.528 |
Kurzbeschreibung (Abstract): | Conductive bridge random access memory (CBRAM) is a resistance-based non-volatile memory [1] with several advantages, such as high scalability, high on-off current with a wide dynamic range compared to oxide-based RAM (OxRAM) [2]. The unique electrochemical metallization mechanism (ECM) involved during device operation allows for lower power consumption and potentially faster switching speeds, making CBRAM more suitable for neuromorphic computing applications [3]. Investigating local processes via in situ transmission electron microscopy (TEM) would facilitate identifying how the device structure impacts performance and reliability; however, studies are scarce and mainly rely on visual changes [4]. In this study, we utilize low-loss electron energy loss spectroscopy (EELS) combined with TEM to fingerprint the dynamical processes in HfO2-based memristive devices via in situ heating and biasing. |
Zusätzliche Informationen: | Physical Sciences Symposia: Electron Microscopy of Advanced Functional Materials |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie |
Hinterlegungsdatum: | 31 Jul 2024 06:52 |
Letzte Änderung: | 31 Jul 2024 06:52 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |