TU Darmstadt / ULB / TUbiblio

Atomic-scale analysis of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3 by cryo/heating MEMS-based in situ TEM

Jiang, Tianshu ; Zhuo, Fangping ; Recalde-Benitez, Oscar ; Pivak, Yevheniy ; Molina-Luna, Leopoldo (2024)
Atomic-scale analysis of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3 by cryo/heating MEMS-based in situ TEM.
In: Microscopy and Microanalysis, 30 (Suppl. 1)
doi: 10.1093/mam/ozae044.675
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Engineering domain walls at the nanoscale aims to enhance macroscopic functional properties, thereby revealing immense potential for advancements in electromechanics and electronics. By imprinting topological defects into functional materials, this approach highlights a substantial opportunity to boost material performance [1, 2], even with our present limited understanding of how topological defects influence domain nucleation and domain wall motion [3]. This gap propels our exploration into the dynamics of domain walls in ferroelectric materials, spanning microscale to nanoscale and ranging from above-room temperature to liquid nitrogen temperatures. Our goal is to drive advancements in electromechanics and electronics applications.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Jiang, Tianshu ; Zhuo, Fangping ; Recalde-Benitez, Oscar ; Pivak, Yevheniy ; Molina-Luna, Leopoldo
Art des Eintrags: Bibliographie
Titel: Atomic-scale analysis of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3 by cryo/heating MEMS-based in situ TEM
Sprache: Englisch
Publikationsjahr: 24 Juli 2024
Verlag: Oxford University Press
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Microscopy and Microanalysis
Jahrgang/Volume einer Zeitschrift: 30
(Heft-)Nummer: Suppl. 1
DOI: 10.1093/mam/ozae044.675
Kurzbeschreibung (Abstract):

Engineering domain walls at the nanoscale aims to enhance macroscopic functional properties, thereby revealing immense potential for advancements in electromechanics and electronics. By imprinting topological defects into functional materials, this approach highlights a substantial opportunity to boost material performance [1, 2], even with our present limited understanding of how topological defects influence domain nucleation and domain wall motion [3]. This gap propels our exploration into the dynamics of domain walls in ferroelectric materials, spanning microscale to nanoscale and ranging from above-room temperature to liquid nitrogen temperatures. Our goal is to drive advancements in electromechanics and electronics applications.

Zusätzliche Informationen:

Physical Sciences Symposia: Advanced Imaging and Spectroscopy Beyond Room Temperature

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
Hinterlegungsdatum: 31 Jul 2024 06:49
Letzte Änderung: 31 Jul 2024 06:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen