Jiang, Tianshu ; Zhuo, Fangping ; Recalde-Benitez, Oscar ; Pivak, Yevheniy ; Molina-Luna, Leopoldo (2024)
Atomic-scale analysis of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3 by cryo/heating MEMS-based in situ TEM.
In: Microscopy and Microanalysis, 30 (Suppl. 1)
doi: 10.1093/mam/ozae044.675
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Engineering domain walls at the nanoscale aims to enhance macroscopic functional properties, thereby revealing immense potential for advancements in electromechanics and electronics. By imprinting topological defects into functional materials, this approach highlights a substantial opportunity to boost material performance [1, 2], even with our present limited understanding of how topological defects influence domain nucleation and domain wall motion [3]. This gap propels our exploration into the dynamics of domain walls in ferroelectric materials, spanning microscale to nanoscale and ranging from above-room temperature to liquid nitrogen temperatures. Our goal is to drive advancements in electromechanics and electronics applications.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Jiang, Tianshu ; Zhuo, Fangping ; Recalde-Benitez, Oscar ; Pivak, Yevheniy ; Molina-Luna, Leopoldo |
Art des Eintrags: | Bibliographie |
Titel: | Atomic-scale analysis of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3 by cryo/heating MEMS-based in situ TEM |
Sprache: | Englisch |
Publikationsjahr: | 24 Juli 2024 |
Verlag: | Oxford University Press |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Microscopy and Microanalysis |
Jahrgang/Volume einer Zeitschrift: | 30 |
(Heft-)Nummer: | Suppl. 1 |
DOI: | 10.1093/mam/ozae044.675 |
Kurzbeschreibung (Abstract): | Engineering domain walls at the nanoscale aims to enhance macroscopic functional properties, thereby revealing immense potential for advancements in electromechanics and electronics. By imprinting topological defects into functional materials, this approach highlights a substantial opportunity to boost material performance [1, 2], even with our present limited understanding of how topological defects influence domain nucleation and domain wall motion [3]. This gap propels our exploration into the dynamics of domain walls in ferroelectric materials, spanning microscale to nanoscale and ranging from above-room temperature to liquid nitrogen temperatures. Our goal is to drive advancements in electromechanics and electronics applications. |
Zusätzliche Informationen: | Physical Sciences Symposia: Advanced Imaging and Spectroscopy Beyond Room Temperature |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie |
Hinterlegungsdatum: | 31 Jul 2024 06:49 |
Letzte Änderung: | 31 Jul 2024 06:49 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |