Foetisch, Alexandra ; Filella, Montserrat ; Watts, Benjamin ; Bragoni, Maeva ; Bigalke, Moritz (2024)
After the sun: a nanoscale comparison of the surface chemical composition of UV and soil weathered plastics.
In: Microplastics and Nanoplastics, 2023, 3
doi: 10.26083/tuprints-00027720
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Once emitted into the environment, macro- (MaP), micro- (MP) and nanoplastics (NP) are exposed to environmental weathering. Yet, the effects of biogeochemical weathering factors occurring in the soil environment are unknown. As the transport, fate, and toxicity of MP and NP depend directly on their surface properties, it is crucial to characterize their transformation in soils to better predict their impact and interactions in this environment. Here, we used scanning transmission x-ray micro spectroscopy to characterize depth profiles of the surface alteration of environmental plastic debris retrieved from soil samples. Controlled weathering experiments in soil and with UV radiation were also performed to investigate the individual effect of these weathering factors on polymer surface alteration. The results revealed a weathered surface on a depth varying between 1 µm and 100 nm in PS, PET and PP environmental plastic fragments naturally weathered in soil. Moreover, the initial step of surface fragmentation was observed on a PS fragment, providing an insight on the factors and processes leading to the release of MP and NP in soils. The comparison of environmental, soil incubated (for 1 year) and UV weathered samples showed that the treatments led to different surface chemical modifications. While the environmental samples showed evidence of alteration involving oxidation processes, the UV weathered samples did not reveal oxidation signs at the surface but only decrease in peak intensities (indicating decrease of the number of chemical C bonds). After a one-year incubation of samples in soil no clear aging effects were observed, indicating that the aging of polymers can be slow in soils.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Foetisch, Alexandra ; Filella, Montserrat ; Watts, Benjamin ; Bragoni, Maeva ; Bigalke, Moritz |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | After the sun: a nanoscale comparison of the surface chemical composition of UV and soil weathered plastics |
Sprache: | Englisch |
Publikationsjahr: | 29 Juli 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2023 |
Ort der Erstveröffentlichung: | Cham |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Microplastics and Nanoplastics |
Jahrgang/Volume einer Zeitschrift: | 3 |
Kollation: | 15 Seiten |
DOI: | 10.26083/tuprints-00027720 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/27720 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Once emitted into the environment, macro- (MaP), micro- (MP) and nanoplastics (NP) are exposed to environmental weathering. Yet, the effects of biogeochemical weathering factors occurring in the soil environment are unknown. As the transport, fate, and toxicity of MP and NP depend directly on their surface properties, it is crucial to characterize their transformation in soils to better predict their impact and interactions in this environment. Here, we used scanning transmission x-ray micro spectroscopy to characterize depth profiles of the surface alteration of environmental plastic debris retrieved from soil samples. Controlled weathering experiments in soil and with UV radiation were also performed to investigate the individual effect of these weathering factors on polymer surface alteration. The results revealed a weathered surface on a depth varying between 1 µm and 100 nm in PS, PET and PP environmental plastic fragments naturally weathered in soil. Moreover, the initial step of surface fragmentation was observed on a PS fragment, providing an insight on the factors and processes leading to the release of MP and NP in soils. The comparison of environmental, soil incubated (for 1 year) and UV weathered samples showed that the treatments led to different surface chemical modifications. While the environmental samples showed evidence of alteration involving oxidation processes, the UV weathered samples did not reveal oxidation signs at the surface but only decrease in peak intensities (indicating decrease of the number of chemical C bonds). After a one-year incubation of samples in soil no clear aging effects were observed, indicating that the aging of polymers can be slow in soils. |
Freie Schlagworte: | Microplastic, Polymer, Weathering, STXM, NEXAFS, Fragmentation, Photo-oxidation, Plastic aging |
ID-Nummer: | Article number: 18 (2023) |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-277209 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Bodenmineralogie und Bodenchemie |
Hinterlegungsdatum: | 29 Jul 2024 13:53 |
Letzte Änderung: | 30 Jul 2024 06:06 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- After the sun: a nanoscale comparison of the surface chemical composition of UV and soil weathered plastics. (deposited 29 Jul 2024 13:53) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |