TU Darmstadt / ULB / TUbiblio

Multicaloric cryocooling using heavy rare-earth free La(Fe,Si)13-based compounds

Beckmann, Benedikt ; Pfeuffer, Lukas ; Lill, Johanna ; Eggert, Benedikt ; Koch, David ; Lavina, Barbara ; Zhao, Jiyong ; Toellner, Thomas ; Alp, Esen E. ; Ollefs, Katharina ; Skokov, Konstantin P. ; Wende, Heiko ; Gutfleisch, Oliver (2024)
Multicaloric cryocooling using heavy rare-earth free La(Fe,Si)13-based compounds.
In: ACS Applied Materials & Interfaces, 16 (29)
doi: 10.1021/acsami.4c05397
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Beckmann, Benedikt ; Pfeuffer, Lukas ; Lill, Johanna ; Eggert, Benedikt ; Koch, David ; Lavina, Barbara ; Zhao, Jiyong ; Toellner, Thomas ; Alp, Esen E. ; Ollefs, Katharina ; Skokov, Konstantin P. ; Wende, Heiko ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Multicaloric cryocooling using heavy rare-earth free La(Fe,Si)13-based compounds
Sprache: Englisch
Publikationsjahr: 11 Juli 2024
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Applied Materials & Interfaces
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 29
DOI: 10.1021/acsami.4c05397
Kurzbeschreibung (Abstract):

The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.

Freie Schlagworte: phase transitions, multicaloric, magnetocaloric, gas liquefaction, La(Fe,Si)13-based compounds
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios
DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios > CRC/TRR 270 HoMMage
Hinterlegungsdatum: 30 Jul 2024 05:20
Letzte Änderung: 30 Jul 2024 08:18
PPN: 520210751
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen