Schäfer, Kilian (2024)
Laser powder bed fusion of hard magnetic composites.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00027587
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
Hard magnetic materials are crucial in advancing human welfare by supporting carbon-neutral technologies and medical devices. While existing manufacturing techniques are well adapted to producing large, simple-shaped magnets, there is a growing need for a more resource-efficient process to produce intricate small magnetic components. Additive manufacturing emerges as a promising solution capable of fabricating hard magnetic components with complex shapes that generate magnetic stray fields tailored for particular applications, in a resource-efficient manner. The adaptability of additive manufacturing technologies to create anisotropic and locally adjusted material properties holds significant potential for magnetic materials. This work investigates composites formed through laser powder bed fusion, combining hard magnetic powders with polyamide-based polymers and flexible thermoplastic polyurethanes. The influence of the magnetic powder filler fraction, morphology and particle size on the resulting magnetic performance is evaluated. It is demonstrated that anisotropic magnetic properties, which are an important step to increase magnetic performance, can be achieved if elongated powder particles with a relation between crystallography and particle morphology are used. Moreover, the research demonstrates the achievement of localized mechanical properties in hard magnetic composites by utilizing distinct laser processing parameters in different regions during the laser powder bed fusion process. This localised control makes it possible to produce magnetically controllable actuators whose properties can be precisely adapted for applications. The energy efficiency of magnetic actuation can be improved and flexible and adjustable requirements for component geometry and local stiffness, which are needed in biomedical applications, can be met. The findings of this work offer a guideline for tailoring the performance of hard magnetic composites using laser powder bed fusion.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2024 | ||||
Autor(en): | Schäfer, Kilian | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Laser powder bed fusion of hard magnetic composites | ||||
Sprache: | Englisch | ||||
Referenten: | Gutfleisch, Prof. Dr. Oliver ; Kupnik, Prof. Dr. Mario | ||||
Publikationsjahr: | 24 Juli 2024 | ||||
Ort: | Darmstadt | ||||
Kollation: | 157 Seiten in verschiedenen Zählungen | ||||
Datum der mündlichen Prüfung: | 11 Juni 2024 | ||||
DOI: | 10.26083/tuprints-00027587 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/27587 | ||||
Kurzbeschreibung (Abstract): | Hard magnetic materials are crucial in advancing human welfare by supporting carbon-neutral technologies and medical devices. While existing manufacturing techniques are well adapted to producing large, simple-shaped magnets, there is a growing need for a more resource-efficient process to produce intricate small magnetic components. Additive manufacturing emerges as a promising solution capable of fabricating hard magnetic components with complex shapes that generate magnetic stray fields tailored for particular applications, in a resource-efficient manner. The adaptability of additive manufacturing technologies to create anisotropic and locally adjusted material properties holds significant potential for magnetic materials. This work investigates composites formed through laser powder bed fusion, combining hard magnetic powders with polyamide-based polymers and flexible thermoplastic polyurethanes. The influence of the magnetic powder filler fraction, morphology and particle size on the resulting magnetic performance is evaluated. It is demonstrated that anisotropic magnetic properties, which are an important step to increase magnetic performance, can be achieved if elongated powder particles with a relation between crystallography and particle morphology are used. Moreover, the research demonstrates the achievement of localized mechanical properties in hard magnetic composites by utilizing distinct laser processing parameters in different regions during the laser powder bed fusion process. This localised control makes it possible to produce magnetically controllable actuators whose properties can be precisely adapted for applications. The energy efficiency of magnetic actuation can be improved and flexible and adjustable requirements for component geometry and local stiffness, which are needed in biomedical applications, can be met. The findings of this work offer a guideline for tailoring the performance of hard magnetic composites using laser powder bed fusion. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-275875 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien |
||||
Hinterlegungsdatum: | 24 Jul 2024 12:26 | ||||
Letzte Änderung: | 25 Jul 2024 06:19 | ||||
PPN: | |||||
Referenten: | Gutfleisch, Prof. Dr. Oliver ; Kupnik, Prof. Dr. Mario | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 11 Juni 2024 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |