TU Darmstadt / ULB / TUbiblio

ScionFL: Secure Quantized Aggregation for Federated Learning

Ben-Itzhak, Yaniv ; Möllering, Helen ; Pinkas, Benny ; Schneider, Thomas ; Suresh, Ajith ; Tkachenko, Oleksandr ; Vargaftik, Shay ; Weinert, Christian ; Yalame, Hossein ; Yanai, Avishay (2024)
ScionFL: Secure Quantized Aggregation for Federated Learning.
2nd IEEE Conference on Secure and Trustworthy Machine Learning (SaTML'24). Toronto, Canada (09.04.2024 - 11.04.2024)
doi: 10.1109/SaTML59370.2024.00031
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Secure aggregation is commonly used in federated learning (FL) to alleviate privacy concerns related to the central aggregator seeing all parameter updates in the clear. Unfortunately, most existing secure aggregation schemes ignore two critical orthogonal research directions that aim to (i) significantly reduce client-server communication and (ii) mitigate the impact of malicious clients. However, both of these additional properties are essential to facilitate cross-device FL with thousands or even millions of (mobile) participants. In this paper, we unite both research directions by introducing ScionFL, the first secure aggregation framework for FL that operates efficiently on quantized inputs and simultaneously provides robustness against malicious clients. Our framework leverages novel multi-party computation MPC techniques and supports multiple linear (1-bit) quantization schemes, including ones that utilize the randomized Hadamard transform and Kashin's representation. Our theoretical results are supported by extensive evaluations. We show that with no overhead for clients and moderate overhead for the server compared to transferring and processing quantized updates in plaintext, we obtain comparable accuracy for standard FL benchmarks. Moreover, we demonstrate the robustness of our framework against state-of-the-art poisoning attacks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Ben-Itzhak, Yaniv ; Möllering, Helen ; Pinkas, Benny ; Schneider, Thomas ; Suresh, Ajith ; Tkachenko, Oleksandr ; Vargaftik, Shay ; Weinert, Christian ; Yalame, Hossein ; Yanai, Avishay
Art des Eintrags: Bibliographie
Titel: ScionFL: Secure Quantized Aggregation for Federated Learning
Sprache: Englisch
Publikationsjahr: 10 Mai 2024
Verlag: IEEE
Buchtitel: Proceedings: IEEE Conference on Safe and Trustworthy Machine Learning: SaTML 2024
Kollation: 23 Seiten
Veranstaltungstitel: 2nd IEEE Conference on Secure and Trustworthy Machine Learning (SaTML'24)
Veranstaltungsort: Toronto, Canada
Veranstaltungsdatum: 09.04.2024 - 11.04.2024
DOI: 10.1109/SaTML59370.2024.00031
Zugehörige Links:
Kurzbeschreibung (Abstract):

Secure aggregation is commonly used in federated learning (FL) to alleviate privacy concerns related to the central aggregator seeing all parameter updates in the clear. Unfortunately, most existing secure aggregation schemes ignore two critical orthogonal research directions that aim to (i) significantly reduce client-server communication and (ii) mitigate the impact of malicious clients. However, both of these additional properties are essential to facilitate cross-device FL with thousands or even millions of (mobile) participants. In this paper, we unite both research directions by introducing ScionFL, the first secure aggregation framework for FL that operates efficiently on quantized inputs and simultaneously provides robustness against malicious clients. Our framework leverages novel multi-party computation MPC techniques and supports multiple linear (1-bit) quantization schemes, including ones that utilize the randomized Hadamard transform and Kashin's representation. Our theoretical results are supported by extensive evaluations. We show that with no overhead for clients and moderate overhead for the server compared to transferring and processing quantized updates in plaintext, we obtain comparable accuracy for standard FL benchmarks. Moreover, we demonstrate the robustness of our framework against state-of-the-art poisoning attacks.

Zusätzliche Informationen:

\textbfRunner-up distinguished paper award

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Praktische Kryptographie und Privatheit
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 2050 Privacy and Trust for Mobile Users
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 25 Jul 2024 07:40
Letzte Änderung: 25 Jul 2024 07:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen