TU Darmstadt / ULB / TUbiblio

BaFFLe: Backdoor detection via Feedback-based Federated Learning

Andreina, Sebastien ; Marson, Giorgia Azzurra ; Möllering, Helen ; Karame, Ghassan (2021)
BaFFLe: Backdoor detection via Feedback-based Federated Learning.
41st IEEE International Conference on Distributed Computing Systems (ICDCS'21). virtual Conference (07.07.2021-10.07.2021)
doi: 10.1109/ICDCS51616.2021.00086
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Recent studies have shown that federated learning (FL) is vulnerable to poisoning attacks that inject a backdoor into the global model. These attacks are effective even when performed by a single client, and undetectable by most existing defensive techniques. In this paper, we propose Backdoor detection via Feedback-based Federated Learning (BAFFLE), a novel defense to secure FL against backdoor attacks. The core idea behind BAFFLE is to leverage data of multiple clients not only for training but also for uncovering model poisoning. We exploit the availability of diverse datasets at the various clients by incorporating a feedback loop into the FL process, to integrate the views of those clients when deciding whether a given model update is genuine or not. We show that this powerful construct can achieve very high detection rates against state-of-the-art backdoor attacks, even when relying on straightforward methods to validate the model. Through empirical evaluation using the CIFAR-10 and FEMNIST datasets, we show that by combining the feedback loop with a method that suspects poisoning attempts by assessing the per-class classification performance of the updated model, BAFFLE reliably detects state-of-the-art backdoor attacks with a detection accuracy of 100% and a false-positive rate below 5%. Moreover, we show that our solution can detect adaptive attacks aimed at bypassing the defense. Index Terms—Federated learning, security, backdoor attacks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Andreina, Sebastien ; Marson, Giorgia Azzurra ; Möllering, Helen ; Karame, Ghassan
Art des Eintrags: Bibliographie
Titel: BaFFLe: Backdoor detection via Feedback-based Federated Learning
Sprache: Englisch
Publikationsjahr: 4 Oktober 2021
Verlag: IEEE
Buchtitel: Proceedings: 2021 IEEE 41st International Conference on Distributed Computing Systems: ICDCS 2021
Kollation: 11 Seiten
Veranstaltungstitel: 41st IEEE International Conference on Distributed Computing Systems (ICDCS'21)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 07.07.2021-10.07.2021
DOI: 10.1109/ICDCS51616.2021.00086
Zugehörige Links:
Kurzbeschreibung (Abstract):

Recent studies have shown that federated learning (FL) is vulnerable to poisoning attacks that inject a backdoor into the global model. These attacks are effective even when performed by a single client, and undetectable by most existing defensive techniques. In this paper, we propose Backdoor detection via Feedback-based Federated Learning (BAFFLE), a novel defense to secure FL against backdoor attacks. The core idea behind BAFFLE is to leverage data of multiple clients not only for training but also for uncovering model poisoning. We exploit the availability of diverse datasets at the various clients by incorporating a feedback loop into the FL process, to integrate the views of those clients when deciding whether a given model update is genuine or not. We show that this powerful construct can achieve very high detection rates against state-of-the-art backdoor attacks, even when relying on straightforward methods to validate the model. Through empirical evaluation using the CIFAR-10 and FEMNIST datasets, we show that by combining the feedback loop with a method that suspects poisoning attempts by assessing the per-class classification performance of the updated model, BAFFLE reliably detects state-of-the-art backdoor attacks with a detection accuracy of 100% and a false-positive rate below 5%. Moreover, we show that our solution can detect adaptive attacks aimed at bypassing the defense. Index Terms—Federated learning, security, backdoor attacks.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Praktische Kryptographie und Privatheit
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 2050 Privacy and Trust for Mobile Users
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 25 Jul 2024 07:20
Letzte Änderung: 25 Jul 2024 07:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen