TU Darmstadt / ULB / TUbiblio

Tetrad: Actively Secure 4PC for Secure Training and Inference

Koti, Nishat ; Patra, Arpita ; Rachuri, Rahul ; Suresh, Ajith (2022)
Tetrad: Actively Secure 4PC for Secure Training and Inference.
29th Network and Distributed System Security Symposium (NDSS'22). San Diego, USA (24.04.2022 - 28.04.2022)
doi: 10.14722/ndss.2022.24058
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Mixing arithmetic and boolean circuits to perform privacy-preserving machine learning has become increasingly popular. Towards this, we propose a framework for the case of four parties with at most one active corruption called Tetrad. Tetrad works over rings and supports two levels of security, fairness and robustness. The fair multiplication protocol costs 5 ring elements, improving over the state-of-the-art Trident (Chaudhari et al. NDSS’20). A key feature of Tetrad is that robustness comes for free over fair protocols. Other highlights across the two variants include (a) probabilistic truncation without overhead, (b) multi-input multiplication protocols, and (c) conversion protocols to switch between the computational domains, along with a tailor-made garbled circuit approach. Benchmarking of Tetrad for both training and inference is conducted over deep neural networks such as LeNet and VGG16. We found that Tetrad is up to 4 times faster in ML training and up to 5 times faster in ML inference. Tetrad is also lightweight in terms of deployment cost, costing up to 6 times less than Trident.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Koti, Nishat ; Patra, Arpita ; Rachuri, Rahul ; Suresh, Ajith
Art des Eintrags: Bibliographie
Titel: Tetrad: Actively Secure 4PC for Secure Training and Inference
Sprache: Englisch
Publikationsjahr: April 2022
Buchtitel: Network and Distributed Systems Security (NDSS) Symposium 2022
Kollation: 18 Seiten
Veranstaltungstitel: 29th Network and Distributed System Security Symposium (NDSS'22)
Veranstaltungsort: San Diego, USA
Veranstaltungsdatum: 24.04.2022 - 28.04.2022
DOI: 10.14722/ndss.2022.24058
URL / URN: https://www.ndss-symposium.org/ndss-paper/auto-draft-202/
Zugehörige Links:
Kurzbeschreibung (Abstract):

Mixing arithmetic and boolean circuits to perform privacy-preserving machine learning has become increasingly popular. Towards this, we propose a framework for the case of four parties with at most one active corruption called Tetrad. Tetrad works over rings and supports two levels of security, fairness and robustness. The fair multiplication protocol costs 5 ring elements, improving over the state-of-the-art Trident (Chaudhari et al. NDSS’20). A key feature of Tetrad is that robustness comes for free over fair protocols. Other highlights across the two variants include (a) probabilistic truncation without overhead, (b) multi-input multiplication protocols, and (c) conversion protocols to switch between the computational domains, along with a tailor-made garbled circuit approach. Benchmarking of Tetrad for both training and inference is conducted over deep neural networks such as LeNet and VGG16. We found that Tetrad is up to 4 times faster in ML training and up to 5 times faster in ML inference. Tetrad is also lightweight in terms of deployment cost, costing up to 6 times less than Trident.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Praktische Kryptographie und Privatheit
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 2050 Privacy and Trust for Mobile Users
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 25 Jul 2024 07:17
Letzte Änderung: 25 Jul 2024 07:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen