TU Darmstadt / ULB / TUbiblio

Phase-field ductile fracture simulations of thermal cracking in additive manufacturing

Ruan, Hui ; Peng, Xiang-Long ; Yang, Yangyiwei ; Gross, Dietmar ; Xu, Bai-Xiang (2024)
Phase-field ductile fracture simulations of thermal cracking in additive manufacturing.
In: Journal of the Mechanics and Physics of Solids, 191
doi: 10.1016/j.jmps.2024.105756
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We present a multiphysics phase-field fracture model for thermo-elasto-plastic solids in the context of finite deformation and apply it to simulate the hot cracking phenomenon during metal additive manufacturing. The model is derived in a thermodynamically consistent manner, with the intercoupling mechanisms among elastoplasticity, phase-field crack and heat transfer comprehensively considered. It involves particularly coupled parameters among these materials physics, e.g. plasticity-dependent degradation function and fracture toughness, damage-dependent yield surface and thermal properties, and temperature-dependent elastoplastic properties and fracture strength. The finite element implementation of the coupled phase-field model is benchmarked with simulation results of a tensile test of an I-shape specimen, encompassing elastoplasticity, hardening, necking, crack initiation and propagation, in contrast to the related experimental results. The validated model is further employed to simulate the multiphysics hot cracking phenomenon in additive manufacturing in the context of both the effective powder-bed model and the powder-resolved model thanks to prior non-isothermal phase-field powder-bed-fusion simulations. Simulation results reveal certain key features of the hot crack and its dependency on process parameters like beam power and scan speed, which are helpful for the fundamental understanding of crack formation mechanisms and process optimization.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Ruan, Hui ; Peng, Xiang-Long ; Yang, Yangyiwei ; Gross, Dietmar ; Xu, Bai-Xiang
Art des Eintrags: Bibliographie
Titel: Phase-field ductile fracture simulations of thermal cracking in additive manufacturing
Sprache: Englisch
Publikationsjahr: Oktober 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the Mechanics and Physics of Solids
Jahrgang/Volume einer Zeitschrift: 191
DOI: 10.1016/j.jmps.2024.105756
Kurzbeschreibung (Abstract):

We present a multiphysics phase-field fracture model for thermo-elasto-plastic solids in the context of finite deformation and apply it to simulate the hot cracking phenomenon during metal additive manufacturing. The model is derived in a thermodynamically consistent manner, with the intercoupling mechanisms among elastoplasticity, phase-field crack and heat transfer comprehensively considered. It involves particularly coupled parameters among these materials physics, e.g. plasticity-dependent degradation function and fracture toughness, damage-dependent yield surface and thermal properties, and temperature-dependent elastoplastic properties and fracture strength. The finite element implementation of the coupled phase-field model is benchmarked with simulation results of a tensile test of an I-shape specimen, encompassing elastoplasticity, hardening, necking, crack initiation and propagation, in contrast to the related experimental results. The validated model is further employed to simulate the multiphysics hot cracking phenomenon in additive manufacturing in the context of both the effective powder-bed model and the powder-resolved model thanks to prior non-isothermal phase-field powder-bed-fusion simulations. Simulation results reveal certain key features of the hot crack and its dependency on process parameters like beam power and scan speed, which are helpful for the fundamental understanding of crack formation mechanisms and process optimization.

ID-Nummer: Artikel-ID: 105756
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 11 Jul 2024 05:49
Letzte Änderung: 11 Jul 2024 06:23
PPN: 51973355X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen