Ruan, Hui ; Peng, Xiang-Long ; Yang, Yangyiwei ; Gross, Dietmar ; Xu, Bai-Xiang (2024)
Phase-field ductile fracture simulations of thermal cracking in additive manufacturing.
In: Journal of the Mechanics and Physics of Solids, 191
doi: 10.1016/j.jmps.2024.105756
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We present a multiphysics phase-field fracture model for thermo-elasto-plastic solids in the context of finite deformation and apply it to simulate the hot cracking phenomenon during metal additive manufacturing. The model is derived in a thermodynamically consistent manner, with the intercoupling mechanisms among elastoplasticity, phase-field crack and heat transfer comprehensively considered. It involves particularly coupled parameters among these materials physics, e.g. plasticity-dependent degradation function and fracture toughness, damage-dependent yield surface and thermal properties, and temperature-dependent elastoplastic properties and fracture strength. The finite element implementation of the coupled phase-field model is benchmarked with simulation results of a tensile test of an I-shape specimen, encompassing elastoplasticity, hardening, necking, crack initiation and propagation, in contrast to the related experimental results. The validated model is further employed to simulate the multiphysics hot cracking phenomenon in additive manufacturing in the context of both the effective powder-bed model and the powder-resolved model thanks to prior non-isothermal phase-field powder-bed-fusion simulations. Simulation results reveal certain key features of the hot crack and its dependency on process parameters like beam power and scan speed, which are helpful for the fundamental understanding of crack formation mechanisms and process optimization.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Ruan, Hui ; Peng, Xiang-Long ; Yang, Yangyiwei ; Gross, Dietmar ; Xu, Bai-Xiang |
Art des Eintrags: | Bibliographie |
Titel: | Phase-field ductile fracture simulations of thermal cracking in additive manufacturing |
Sprache: | Englisch |
Publikationsjahr: | Oktober 2024 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of the Mechanics and Physics of Solids |
Jahrgang/Volume einer Zeitschrift: | 191 |
DOI: | 10.1016/j.jmps.2024.105756 |
Kurzbeschreibung (Abstract): | We present a multiphysics phase-field fracture model for thermo-elasto-plastic solids in the context of finite deformation and apply it to simulate the hot cracking phenomenon during metal additive manufacturing. The model is derived in a thermodynamically consistent manner, with the intercoupling mechanisms among elastoplasticity, phase-field crack and heat transfer comprehensively considered. It involves particularly coupled parameters among these materials physics, e.g. plasticity-dependent degradation function and fracture toughness, damage-dependent yield surface and thermal properties, and temperature-dependent elastoplastic properties and fracture strength. The finite element implementation of the coupled phase-field model is benchmarked with simulation results of a tensile test of an I-shape specimen, encompassing elastoplasticity, hardening, necking, crack initiation and propagation, in contrast to the related experimental results. The validated model is further employed to simulate the multiphysics hot cracking phenomenon in additive manufacturing in the context of both the effective powder-bed model and the powder-resolved model thanks to prior non-isothermal phase-field powder-bed-fusion simulations. Simulation results reveal certain key features of the hot crack and its dependency on process parameters like beam power and scan speed, which are helpful for the fundamental understanding of crack formation mechanisms and process optimization. |
ID-Nummer: | Artikel-ID: 105756 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien Zentrale Einrichtungen Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner |
Hinterlegungsdatum: | 11 Jul 2024 05:49 |
Letzte Änderung: | 21 Nov 2024 06:26 |
PPN: | 51973355X |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |