TU Darmstadt / ULB / TUbiblio

Grain boundary segregation in iron doped strontium titanate: from dilute to concentrated solid solutions

Jennings, Dylan ; Zahler, M. Pascal ; Wang, Di ; Ma, Qianli ; Deibert, Wendelin ; Kindelmann, Moritz ; Kübel, Christian ; Baumann, Stefan ; Guillon, Olivier ; Mayer, Joachim ; Rheinheimer, Wolfgang (2024)
Grain boundary segregation in iron doped strontium titanate: from dilute to concentrated solid solutions.
In: Acta Materialia, 273
doi: 10.1016/j.actamat.2024.119941
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Strontium titanate, a perovskite oxide, is a frequently studied material for a large variety of applications. When acceptor-doped (with Fe, for example), the material is useful for its mixed oxygen and electronic conductivity, with potential use in oxygen transport membranes or as a cathode for solid oxide fuel cells. A barrier to conductivity in perovskites is the presence of space charge regions at the grain boundaries, which form due to the segregation of charged point defects. Typically, space charge theory assumes bulk dopant concentrations beneath the dilute limit, however concentrated solid-solutions are often utilized in applications. The current work aims to address this disparity: grain boundary segregation in strontium ferrite-strontium titanate solid-solutions is analyzed at three compositions, with Fe contents ranging from near the dilute limit to well above the dilute limit (Fe contents of 2 %, 5 %, and 25 % on the B-site of the perovskite). Electrochemical impedance spectroscopy shows an increase in material conductivity as Fe is added. High-resolution STEM imaging and spectral mapping is utilized, showing that Fe segregates to the grain boundary core, contrary to what is expected from space charge theory. As the Fe content is increased, the amount of Fe segregated to the boundary increases significantly, but the segregation width of Fe at the boundary remains consistent.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Jennings, Dylan ; Zahler, M. Pascal ; Wang, Di ; Ma, Qianli ; Deibert, Wendelin ; Kindelmann, Moritz ; Kübel, Christian ; Baumann, Stefan ; Guillon, Olivier ; Mayer, Joachim ; Rheinheimer, Wolfgang
Art des Eintrags: Bibliographie
Titel: Grain boundary segregation in iron doped strontium titanate: from dilute to concentrated solid solutions
Sprache: Englisch
Publikationsjahr: 3 Mai 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 273
DOI: 10.1016/j.actamat.2024.119941
URL / URN: https://www.sciencedirect.com/science/article/pii/S135964542...
Kurzbeschreibung (Abstract):

Strontium titanate, a perovskite oxide, is a frequently studied material for a large variety of applications. When acceptor-doped (with Fe, for example), the material is useful for its mixed oxygen and electronic conductivity, with potential use in oxygen transport membranes or as a cathode for solid oxide fuel cells. A barrier to conductivity in perovskites is the presence of space charge regions at the grain boundaries, which form due to the segregation of charged point defects. Typically, space charge theory assumes bulk dopant concentrations beneath the dilute limit, however concentrated solid-solutions are often utilized in applications. The current work aims to address this disparity: grain boundary segregation in strontium ferrite-strontium titanate solid-solutions is analyzed at three compositions, with Fe contents ranging from near the dilute limit to well above the dilute limit (Fe contents of 2 %, 5 %, and 25 % on the B-site of the perovskite). Electrochemical impedance spectroscopy shows an increase in material conductivity as Fe is added. High-resolution STEM imaging and spectral mapping is utilized, showing that Fe segregates to the grain boundary core, contrary to what is expected from space charge theory. As the Fe content is increased, the amount of Fe segregated to the boundary increases significantly, but the segregation width of Fe at the boundary remains consistent.

ID-Nummer: Artikel-ID: 119941
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1548: FLAIR – Fermi Level Engineering Applied to Oxide Electroceramics
Hinterlegungsdatum: 10 Jul 2024 08:13
Letzte Änderung: 10 Jul 2024 11:31
PPN: 519713257
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen