TU Darmstadt / ULB / TUbiblio

Spatiotemporal analysis of sheet and cloud cavitation and its damage potential

Hatzissawidis, Grigorios ; Kerres, Lara ; Ludwig, Gerhard J. ; Pelz, Peter F. (2022)
Spatiotemporal analysis of sheet and cloud cavitation and its damage potential.
In: IOP Conference Series: Earth and Environmental Science, 1079
doi: 10.1088/1755-1315/1079/1/012046
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The cavitation regime has a substantial influence on the damage potential, thus it has to be considered in any specific investigation. For this purpose, we set up a test rig at the Technische Universität Darmstadt using a Circular Leading Edge hydrofoil (CLE) to analyse the damage potential of sheet and cloud cavitation. Exceeding a critical Reynolds number Re c, the cavitation regime transitions from harmless sheet cavitation to aggressive cloud cavitation. High-speed recordings of the cavitation regime are correlated with high frequency pressure data from a wall-mounted piezoelectric pressure transducer. Spatial and temporal content of the cavitating flow are captured applying proper orthogonal decomposition (POD) to the high-speed recordings. In order to determine the damage potential of the cavitation regime we apply a copper foil on the hydrofoil surface, on which plastic, crater-shaped deformations due to bubble collapses occur. Images of the surface are recorded before and after each run via two-dimensional Pit-Count microscopy. We correlate spatial modes from the cavitating flow field with the eroded surface rate from pitting tests leading to the result that cloud cavitation associated with increasing cloud size is more aggressive. A power law is identified where pitting rate increases with fourteenth power of the Reynolds number.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Hatzissawidis, Grigorios ; Kerres, Lara ; Ludwig, Gerhard J. ; Pelz, Peter F.
Art des Eintrags: Bibliographie
Titel: Spatiotemporal analysis of sheet and cloud cavitation and its damage potential
Sprache: Englisch
Publikationsjahr: 2022
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IOP Conference Series: Earth and Environmental Science
Jahrgang/Volume einer Zeitschrift: 1079
Kollation: 12 Seiten
DOI: 10.1088/1755-1315/1079/1/012046
Zugehörige Links:
Kurzbeschreibung (Abstract):

The cavitation regime has a substantial influence on the damage potential, thus it has to be considered in any specific investigation. For this purpose, we set up a test rig at the Technische Universität Darmstadt using a Circular Leading Edge hydrofoil (CLE) to analyse the damage potential of sheet and cloud cavitation. Exceeding a critical Reynolds number Re c, the cavitation regime transitions from harmless sheet cavitation to aggressive cloud cavitation. High-speed recordings of the cavitation regime are correlated with high frequency pressure data from a wall-mounted piezoelectric pressure transducer. Spatial and temporal content of the cavitating flow are captured applying proper orthogonal decomposition (POD) to the high-speed recordings. In order to determine the damage potential of the cavitation regime we apply a copper foil on the hydrofoil surface, on which plastic, crater-shaped deformations due to bubble collapses occur. Images of the surface are recorded before and after each run via two-dimensional Pit-Count microscopy. We correlate spatial modes from the cavitating flow field with the eroded surface rate from pitting tests leading to the result that cloud cavitation associated with increasing cloud size is more aggressive. A power law is identified where pitting rate increases with fourteenth power of the Reynolds number.

Freie Schlagworte: cavitation, cavitation erosion, Pit-Count microscopy, high-speed visualisation, modal decomposition
ID-Nummer: Artikel-ID: 012046
Zusätzliche Informationen:

31st IAHR Symposium on Hydraulic Machinery and Systems 26/06/2022 - 01/07/2022 Trondheim, Norway

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Fluidsystemtechnik (FST) (seit 01.10.2006)
Hinterlegungsdatum: 09 Jul 2024 08:58
Letzte Änderung: 09 Jul 2024 11:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen