TU Darmstadt / ULB / TUbiblio

CiteBench: A Benchmark for Scientific Citation Text Generation

Funkquist, Martin ; Kuznetsov, Ilia ; Hou, Yufang ; Gurevych, Iryna (2024)
CiteBench: A Benchmark for Scientific Citation Text Generation.
The 2023 Conference on Empirical Methods in Natural Language Processing. Singapore (06.-10.12.2023)
doi: 10.26083/tuprints-00027660
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Science progresses by building upon the prior body of knowledge documented in scientific publications. The acceleration of research makes it hard to stay up-to-date with the recent developments and to summarize the ever-growing body of prior work. To address this, the task of citation text generation aims to produce accurate textual summaries given a set of papers-to-cite and the citing paper context. Due to otherwise rare explicit anchoring of cited documents in the citing paper, citation text generation provides an excellent opportunity to study how humans aggregate and synthesize textual knowledge from sources. Yet, existing studies are based upon widely diverging task definitions, which makes it hard to study this task systematically. To address this challenge, we propose CiteBench: a benchmark for citation text generation that unifies multiple diverse datasets and enables standardized evaluation of citation text generation models across task designs and domains. Using the new benchmark, we investigate the performance of multiple strong baselines, test their transferability between the datasets, and deliver new insights into the task definition and evaluation to guide future research in citation text generation. We make the code for CiteBench publicly available at https://github.com/UKPLab/citebench.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Funkquist, Martin ; Kuznetsov, Ilia ; Hou, Yufang ; Gurevych, Iryna
Art des Eintrags: Zweitveröffentlichung
Titel: CiteBench: A Benchmark for Scientific Citation Text Generation
Sprache: Englisch
Publikationsjahr: 8 Juli 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Kerrville, TX, USA
Verlag: ACL
Buchtitel: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungstitel: The 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Singapore
Veranstaltungsdatum: 06.-10.12.2023
DOI: 10.26083/tuprints-00027660
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27660
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Science progresses by building upon the prior body of knowledge documented in scientific publications. The acceleration of research makes it hard to stay up-to-date with the recent developments and to summarize the ever-growing body of prior work. To address this, the task of citation text generation aims to produce accurate textual summaries given a set of papers-to-cite and the citing paper context. Due to otherwise rare explicit anchoring of cited documents in the citing paper, citation text generation provides an excellent opportunity to study how humans aggregate and synthesize textual knowledge from sources. Yet, existing studies are based upon widely diverging task definitions, which makes it hard to study this task systematically. To address this challenge, we propose CiteBench: a benchmark for citation text generation that unifies multiple diverse datasets and enables standardized evaluation of citation text generation models across task designs and domains. Using the new benchmark, we investigate the performance of multiple strong baselines, test their transferability between the datasets, and deliver new insights into the task definition and evaluation to guide future research in citation text generation. We make the code for CiteBench publicly available at https://github.com/UKPLab/citebench.

ID-Nummer: 2023.emnlp-main.455
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-276602
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 08 Jul 2024 09:31
Letzte Änderung: 09 Jul 2024 09:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen