TU Darmstadt / ULB / TUbiblio

High-throughput design of all-d-metal Heusler alloys for magnetocaloric applications

Fortunato, Nuno M. ; Li, Xiaoqing ; Schönecker, Stephan ; Xie, Ruiwen ; Taubel, Andreas ; Scheibel, Franziska ; Opahle, Ingo ; Gutfleisch, Oliver ; Zhang, Hongbin (2023)
High-throughput design of all-d-metal Heusler alloys for magnetocaloric applications.
In: ArXiv. Condensed Matter
doi: 10.48550/arXiv.2306.17092
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Due to their versatile composition and customizable properties, A2BC Heusler alloys have found applications in magnetic refrigeration, magnetic shape memory effects, permanent magnets, and spintronic devices. The discovery of all-d-metal Heusler alloys with improved mechanical properties compared to those containing main group elements, presents an opportunity to engineer Heuslers alloys for energy-related applications. Using high-throughput density functional theory calculations, we screened magnetic all-d-metal Heusler compounds and identified 686 (meta)stable compounds. Our detailed analysis revealed that the inverse Heusler structure is preferred when the electronegativity difference between the A and B/C atoms is small, contrary to conventional Heusler alloys. Additionally, our calculations of Pugh ratios and Cauchy pressures demonstrated that ductile and metallic bonding are widespread in all-d-metal Heuslers, supporting their enhanced mechanical behaviour. We identified 49 compounds with a double-well energy surface based on Bain path calculations and magnetic ground states, indicating their potential as candidates for magnetocaloric and shape memory applications. Furthermore, by calculating the free energies, we propose that 11 compounds exhibit structural phase transitions, and propose isostructural substitution to enhance the magnetocaloric effect.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Fortunato, Nuno M. ; Li, Xiaoqing ; Schönecker, Stephan ; Xie, Ruiwen ; Taubel, Andreas ; Scheibel, Franziska ; Opahle, Ingo ; Gutfleisch, Oliver ; Zhang, Hongbin
Art des Eintrags: Bibliographie
Titel: High-throughput design of all-d-metal Heusler alloys for magnetocaloric applications
Sprache: Englisch
Publikationsjahr: 29 Juni 2023
Verlag: Cornell University
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ArXiv. Condensed Matter
DOI: 10.48550/arXiv.2306.17092
URL / URN: https://arxiv.org/abs/2306.17092
Kurzbeschreibung (Abstract):

Due to their versatile composition and customizable properties, A2BC Heusler alloys have found applications in magnetic refrigeration, magnetic shape memory effects, permanent magnets, and spintronic devices. The discovery of all-d-metal Heusler alloys with improved mechanical properties compared to those containing main group elements, presents an opportunity to engineer Heuslers alloys for energy-related applications. Using high-throughput density functional theory calculations, we screened magnetic all-d-metal Heusler compounds and identified 686 (meta)stable compounds. Our detailed analysis revealed that the inverse Heusler structure is preferred when the electronegativity difference between the A and B/C atoms is small, contrary to conventional Heusler alloys. Additionally, our calculations of Pugh ratios and Cauchy pressures demonstrated that ductile and metallic bonding are widespread in all-d-metal Heuslers, supporting their enhanced mechanical behaviour. We identified 49 compounds with a double-well energy surface based on Bain path calculations and magnetic ground states, indicating their potential as candidates for magnetocaloric and shape memory applications. Furthermore, by calculating the free energies, we propose that 11 compounds exhibit structural phase transitions, and propose isostructural substitution to enhance the magnetocaloric effect.

ID-Nummer: arXiv:2306.17092
Zusätzliche Informationen:

We acknowledge the financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant No. 743116 - project” Cool Innov”) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 405553726 - TRR 270. Lichtenberg high performance computer of the TU Darmstadt where calculations were performed for this project is gratefully acknowledged for the computational resources.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios
DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios > CRC/TRR 270 HoMMage
Hinterlegungsdatum: 27 Jun 2024 06:04
Letzte Änderung: 27 Jun 2024 06:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen