TU Darmstadt / ULB / TUbiblio

On Computational Investigation of the Supercooled Stefan Problem

Criscione, Antonio ; Kintea, Daniel ; Tukovic, Zeljko ; Jakirlic, Suad ; Roisman, Ilia ; Tropea, Cameron
Hrsg.: Criscione, Antonio (2013)
On Computational Investigation of the Supercooled Stefan Problem.
ICLASS 2012, 12th Triennial International Conference on Liquid Atomization and Spray Systems. Heidelberg (02.09.-06.09.2012)
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In the present paper a computational model for the macroscopic freezing mechanism under supercooled conditions relying on the physical and mathematical description of the two-phase Stefan problem is formulated. The relevant numerical algorithm based on the finite volume method is implemented into the open source software OpenFOAM©. For the numerical capturing of the moving interface between the supercooled and the solidified liquid an appropriate level set formulation is utilized. The heat transfer equations are solved in both the liquid phase and solid phase independently from each other. At the interface a Dirichlet boundary condition for the temperature field is imposed and a ghost-face method is applied to ensure accurate calculation of the normal derivative needed for the jump condition, i.e. for the interface-velocity in the normal direction. For the sake of updating the level set function a narrow-band around the interface is introduced. Within this band, whose width is temporally adjusted to the maximum curvature of the interface, the normal-to-interface velocity is appropriately expanded. The physical model and numerical algorithm are validated along with the analytical solution. Understanding instabilities is the first step in controlling them, so to quantify all sorts of instabilities at the solidification front the Mullins-Sekerka theory of morphological stability is investigated.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2013
Herausgeber: Criscione, Antonio
Autor(en): Criscione, Antonio ; Kintea, Daniel ; Tukovic, Zeljko ; Jakirlic, Suad ; Roisman, Ilia ; Tropea, Cameron
Art des Eintrags: Zweitveröffentlichung
Titel: On Computational Investigation of the Supercooled Stefan Problem
Sprache: Englisch
Publikationsjahr: 23 Mai 2013
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2012
Veranstaltungstitel: ICLASS 2012, 12th Triennial International Conference on Liquid Atomization and Spray Systems
Veranstaltungsort: Heidelberg
Veranstaltungsdatum: 02.09.-06.09.2012
URL / URN: https://tuprints.ulb.tu-darmstadt.de/3341
Zugehörige Links:
Kurzbeschreibung (Abstract):

In the present paper a computational model for the macroscopic freezing mechanism under supercooled conditions relying on the physical and mathematical description of the two-phase Stefan problem is formulated. The relevant numerical algorithm based on the finite volume method is implemented into the open source software OpenFOAM©. For the numerical capturing of the moving interface between the supercooled and the solidified liquid an appropriate level set formulation is utilized. The heat transfer equations are solved in both the liquid phase and solid phase independently from each other. At the interface a Dirichlet boundary condition for the temperature field is imposed and a ghost-face method is applied to ensure accurate calculation of the normal derivative needed for the jump condition, i.e. for the interface-velocity in the normal direction. For the sake of updating the level set function a narrow-band around the interface is introduced. Within this band, whose width is temporally adjusted to the maximum curvature of the interface, the normal-to-interface velocity is appropriately expanded. The physical model and numerical algorithm are validated along with the analytical solution. Understanding instabilities is the first step in controlling them, so to quantify all sorts of instabilities at the solidification front the Mullins-Sekerka theory of morphological stability is investigated.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-33417
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Strömungslehre und Aerodynamik (SLA)
Hinterlegungsdatum: 20 Jun 2024 16:25
Letzte Änderung: 20 Jun 2024 16:25
PPN: 386275564
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen